The evolution of cheating in viruses

  • 1.

    West, S. A., Griffin, A. S. & Gardner, A. Evolutionary explanations for cooperation. Curr. Biol. 17, R661–R672 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Bourke, A. F. G. Ideas of Social Evolution (Oxford College Press, 2011).

  • 3.

    Davies, N. B., Krebs, J. R. & West, S. A. An Introduction to Behavioural Ecology (John Wiley & Sons, 2012).

  • 4.

    West, S. A., Griffin, A. S. & Gardner, A. Social semantics: altruism, cooperation, mutualism, robust reciprocity and group choice. J. Evol. Biol. 20, 415–432 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Ghoul, M., Griffin, A. S. & West, S. A. Towards an evolutionary definition of dishonest. Evolution 68, 318–331 (2013).

    PubMed 

    Google Scholar
     

  • 6.

    Jones, E. I. et al. Cheaters should prosper: reconciling theoretical and empirical views on dishonest in mutualism. Ecol. Lett. 18, 1270–1284 (2015).

    PubMed 

    Google Scholar
     

  • 7.

    Andersen, S. B., Marvig, R. L., Molin, S., Krogh Johansen, H. & Griffin, A. S. Lengthy-term social dynamics drive lack of perform in pathogenic micro organism. Proc. Natl Acad. Sci. USA 112, 10756–10761 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competitors in pathogenic micro organism. Nature 430, 1024–1027 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Flower, T. Fork-tailed drongos use misleading mimicked alarm calls to steal meals. Proc. R. Soc. B Biol. Sci. 278, 1548–1555 (2011).


    Google Scholar
     

  • 10.

    Frederickson, M. E. Mutualisms should not on the verge of breakdown. Traits Ecol. Evol. https://doi.org/10.1016/j.tree.2017.07.001 (2017).

  • 11.

    Jandér, Ok. C. & Herre, E. A. Host sanctions and pollinator dishonest within the fig tree–fig wasp mutualism. Proc. R. Soc. B Biol. Sci. 277, 1481–1488 (2010).


    Google Scholar
     

  • 12.

    Ostrowski, E. A. et al. Genomic signatures of cooperation and battle within the social amoeba. Curr. Biol. 25, 1661–1665 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–16 (1964).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    West, S. A., Cooper, G. A., Ghoul, M. B. & Griffin, A. S. Ten latest insights for our understanding of cooperation. Nat. Ecol. Evol. 1–12, https://doi.org/10.1038/s41559-020-01384-x (2021).

  • 15.

    Kirkwood, T. B. & Bangham, C. R. Cycles, chaos, and evolution in virus cultures: a mannequin of faulty interfering particles. Proc. Natl Acad. Sci. USA 91, 8685–8689 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Frank, S. A. Inside-host spatial dynamics of viruses and faulty interfering particles. J. Theor. Biol. 206, 279–290 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution principle for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in group and host interactions. Nat. Rev. Microbiol. 1–12, https://doi.org/10.1038/s41579-019-0284-4 (2019).

  • 19.

    Gano-Cohen, Ok. A. et al. Recurrent mutualism breakdown occasions in a legume rhizobia metapopulation. Proc. R. Soc. B Biol. Sci. 287, 20192549 (2020).

    CAS 

    Google Scholar
     

  • 20.

    Cordero, O. X., Ventouras, L.-A., DeLong, E. F. & Polz, M. F. Public good dynamics drive evolution of iron acquisition methods in pure bacterioplankton populations. Proc. Natl Acad. Sci. USA 109, 20059–20064 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Davies, N. B. Cuckoos, Cowbirds and Different Cheats (T & AD Poyser, 2010).

  • 22.

    Meir, M. et al. Competitors between social cheater viruses is pushed by mechanistically completely different dishonest methods. Sci. Adv. 6, eabb7990 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Shirogane, Y. et al. Experimental and mathematical insights on the interactions between poliovirus and a faulty interfering genome. PLOS Pathogens. 17, e1009277 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Vignuzzi, M. & López, C. B. Faulty viral genomes are key drivers of the virus–host interplay. Nat. Microbiol. 1, https://doi.org/10.1038/s41564-019-0465-y (2019).

  • 25.

    Roux, L., Simon, A. E. & Holland, J. J. In Advances In Virus Analysis (eds Maramorosch, Ok., Murphy, F. A. & Shatkin, A. J.) Vol. 40, 181–211 (Tutorial Press, 1991).

  • 26.

    Díaz-Muñoz, S. L., Sanjuán, R. & West, S. A. Sociovirology: battle, cooperation, and communication amongst viruses. Cell Host Microbe 22, 437–441 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    West, S. A., Fisher, R. M., Gardner, A. & Kiers, E. T. Main evolutionary transitions in individuality. Proc. Natl Acad. Sci. USA 112, 10112–10119 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Queller, D. C. & Strassmann, J. E. Past society: the evolution of organismality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3143–3155 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Sanjuán, R. The social lifetime of viruses. Annu. Rev. Virol. 8, 183–199 (2021).

  • 30.

    Flint, J., Racaniello, V. R., Rall, G. F. & Skalka, A. M. Ideas of Virology (American Society of Microbiology, 2015).

  • 31.

    Novak, J. E. & Kirkegaard, Ok. Coupling between genome translation and replication in an RNA virus. Genes Dev. 8, 1726–1737 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Alnaji, F. G. et al. Sequencing framework for the delicate detection and exact mapping of faulty interfering particle-associated deletions throughout influenza A and B viruses. J. Virol. 93, e00354-19 (2019).

  • 33.

    Murphy, Ok. Janeway’s Immunobiology (Garland Science, 2011).

  • 34.

    Domingo-Calap, P., Segredo-Otero, E., Durán-Moreno, M. & Sanjuán, R. Social evolution of innate immunity evasion in a virus. Nat. Microbiol. 1, https://doi.org/10.1038/s41564-019-0379-8 (2019).

  • 35.

    Landsberger, M. et al. Anti-CRISPR phages cooperate to beat CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Erez, Z. et al. Communication between viruses guides lysis–lysogeny choices. Nature 541, 488–493 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Huang, A. S. & Baltimore, D. Faulty viral particles and viral illness processes. Nature 226, 325–327 (1970).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Simon, A. E., Roossinck, M. J. & Havelda, Z. Plant virus satellite tv for pc and faulty interfering RNAs: new paradigms for a brand new century. Annu. Rev. Phytopathol. 42, 415–437 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Frensing, T., Pflugmacher, A., Bachmann, M., Peschel, B. & Reichl, U. Impression of faulty interfering particles on virus replication and antiviral host response in cell culture-based influenza vaccine manufacturing. Appl. Microbiol. Biotechnol. 98, 8999–9008 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Christie, G. E. & Dokland, T. Pirates of the caudovirales. Virology 434, 210–221 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Gnanasekaran, P. & Chakraborty, S. Biology of viral satellites and their function in pathogenesis. Curr. Opin. Virol. 33, 96–105 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Chevallereau, A. et al. Exploitation of the cooperative behaviors of anti-CRISPR phages. Cell Host Microbe 27, 189–198 (2020).

  • 44.

    Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. Native migration promotes aggressive restraint in a number–pathogen ‘tragedy of the commons’. Nature 442, 75 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Skums, P., Bunimovich, L. & Khudyakov, Y. Antigenic cooperation amongst intrahost HCV variants organized into a posh community of cross-immunoreactivity. Proc. Natl Acad. Sci. USA 112, 6653–6658 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Geoghegan, J. L. & Holmes, E. C. Evolutionary virology at 40. Genetics 210, 1151–1162 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Turner, P. E. & Chao, L. Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Dennehy, J. J. & Turner, P. E. Lowered fecundity is the price of dishonest in RNA virus 6. Proc. R. Soc. B Biol. Sci. 271, 2275–2282 (2004).

    CAS 

    Google Scholar
     

  • 49.

    Ross‐Gillespie, A., Gardner, A., West, S. A. & Griffin, A. S. Frequency dependence and cooperation: principle and a check with micro organism. Am. Nat. 170, 331–342 (2007).

    PubMed 

    Google Scholar
     

  • 50.

    Ghoul, M., West, S. A., Diggle, S. P. & Griffin, A. S. An experimental check of whether or not dishonest is context dependent. J. Evol. Biol. 27, 551–556 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Jiricny, N. et al. Health correlates with the extent of dishonest in a bacterium. J. Evol. Biol. 23, 738–747 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Pathak, Ok. B. & Nagy, P. D. Faulty interfering RNAs: foes of viruses and pals of virologists. Viruses 1, 895–919 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    von Magnus, P. Research on Interference in Experimental Influenza Vol. 1 (Almqvist & Wiksell, 1947).

  • 54.

    Rezelj, V. V., Levi, L. I. & Vignuzzi, M. The faulty element of viral populations. Curr. Opin. Virol. 33, 74–80 (2018).

    PubMed 

    Google Scholar
     

  • 55.

    Nee, S. & Maynard Smith, J. The evolutionary biology of molecular parasites. Parasitology 100, S5–S18 (1990).

    PubMed 

    Google Scholar
     

  • 56.

    Szathmáry, E. Co-operation and defection: enjoying the sector in virus dynamics. J. Theor. Biol. 165, 341–356 (1993).

    ADS 
    PubMed 

    Google Scholar
     

  • 57.

    Brown, S. P. Collective motion in an RNA virus. J. Evol. Biol. 14, 821–828 (2001).


    Google Scholar
     

  • 58.

    Chao, L. & Elena, S. F. Nonlinear trade-offs enable the cooperation sport to evolve from Prisoner’s dilemma to snowdrift. Proc. R. Soc. B 284, 20170228 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Rüdiger, D., Kupke, S. Y., Laske, T., Zmora, P. & Reichl, U. Multiscale modeling of influenza A virus replication in cell cultures predicts an infection dynamics for extremely completely different an infection circumstances. PLoS Comput. Biol. 15, e1006819 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Holmes, E. C. The Evolution and Emergence of RNA Viruses (Oxford College Press, 2009).

  • 61.

    Schröder, C. H., Fürst, B., Weise, Ok. & Grey, C. P. A research of interfering herpes simplex virus DNA preparations containing faulty genomes of both class I or II and the identification of minimal necessities for interference. J. Gen. Virol. 65, 493–506 (1984).

    PubMed 

    Google Scholar
     

  • 62.

    Vogt, P. Ok. & Jackson, A. O. Satellites and Faulty Viral RNAs (Springer, 1999).

  • 63.

    Roossinck, M. J., Sleat, D. & Palukaitis, P. Satellite tv for pc RNAs of plant viruses: constructions and organic results. Microbiol. Rev. 56, 265–279 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Qiu, W. & Scholthof, Ok.-B. G. Faulty interfering RNAs of a satellite tv for pc virus. J. Virol. 75, 5429–5432 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Chang, W.-S. et al. Novel hepatitis D-like brokers in vertebrates and invertebrates. Virus Evol. 5, vez021 (2019).

  • 66.

    Penadés, J. R. & Christie, G. E. The phage-inducible chromosomal islands: a household of extremely developed molecular parasites. Annu. Rev. Virol. 2, 181–201 (2015).

    PubMed 

    Google Scholar
     

  • 67.

    Mougari, S., Sahmi-Bounsiar, D., Levasseur, A., Colson, P. & La Scola, B. Virophages of large. Viruses 11, 733 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 68.

    Parks, W. P., Casazza, A. M., Alcott, J. & Melnick, J. L. Adeno-associated satellite tv for pc virus interference with the replication of its helper adenovirus. J. Exp. Med. 127, 91–108 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    McKitterick, A. C. & Seed, Ok. D. Anti-phage islands pressure their goal phage to instantly mediate island excision and unfold. Nat. Commun. 9, 2348 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    La Scola, B. et al. An enormous virus in amoebae. Science 299, 2033–2033 (2003).

    PubMed 

    Google Scholar
     

  • 71.

    La Scola, B. et al. The virophage as a novel parasite of the enormous mimivirus. Nature 455, 100–104 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 72.

    Zhou, J. et al. Variety of virophages in metagenomic knowledge units. J. Virol. 87, 4225–4236 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Paez-Espino, D. et al. Variety, evolution, and classification of virophages uncovered by way of world metagenomics. Microbiome 7, 157 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Duponchel, S. & Fischer, M. G. Viva lavidaviruses! 5 options of virophages that parasitize large DNA viruses. PLoS Pathog. 15, e1007592 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Leeks, A. & West, S. A. Altruism in a virus. Nat. Microbiol. 4, 910–911 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Yuen, C.-Ok. et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 perform as potent interferon antagonists. Emerg. Microbes Infect. 0, 1–29 (2020).


    Google Scholar
     

  • 77.

    Russell, A. B., Elshina, E., Kowalsky, J. R., Velthuis, A. J. W. te & Bloom, J. D. Single-cell virus sequencing of influenza infections that set off innate immunity. J. Virol. https://doi.org/10.1128/JVI.00500-19 (2019).

  • 78.

    Wolf, Y. I. et al. Origins and evolution of the worldwide RNA virome. mBio 9, e02329-18 (2018).

  • 79.

    Wolf, Y. I. et al. Doubling of the identified set of RNA viruses by metagenomic evaluation of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Zhang, Y.-Z., Shi, M. & Holmes, E. C. Utilizing metagenomics to characterize an increasing virosphere. Cell 172, 1168–1172 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 81.

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature https://doi.org/10.1038/nature20167 (2016).

  • 82.

    Schmerer, M., Molineux, I. J. & Bull, J. J. Synergy as a rationale for phage remedy utilizing phage cocktails. PeerJ 2, e590 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Bondy-Denomy, J. et al. Prophages mediate protection towards phage an infection by way of various mechanisms. ISME J. 10, 2854–2866 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Leeks, A., Sanjuán, R. & West, S. A. The evolution of collective infectious models in viruses. Virus Res. 265, 94–101 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Andreu-Moreno, I. & Sanjuán, R. Collective viral unfold mediated by virion aggregates promotes the evolution of faulty interfering particles. mBio 11, e02156-19 (2020).

  • 86.

    Gallagher, M. E., Brooke, C. B., Ke, R. & Koelle, Ok. Causes and penalties of spatial within-host viral unfold. Viruses 10, 627 (2018).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 87.

    Tramper, J. & Vlak, J. M. Some engineering and financial features of steady cultivation of insect cells for the manufacturing of baculoviruses. Ann. N. Y. Acad. Sci. 469, 279–288 (1986).

    ADS 

    Google Scholar
     

  • 88.

    Tapia, F. et al. Steady influenza virus manufacturing in a tubular bioreactor system supplies secure titers and avoids the “von Magnus impact”. PLoS ONE 14, e0224317 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Frensing, T. Faulty interfering viruses and their impression on vaccines and viral vectors. Biotechnol. J. 10, 681–689 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Brooke, C. B., Ince, W. L., Wei, J., Bennink, J. R. & Yewdell, J. W. Influenza A virus nucleoprotein selectively decreases neuraminidase gene-segment packaging whereas enhancing viral health and transmissibility. Proc. Natl Acad. Sci. USA 111, 16854–16859 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Gutiérrez, S. et al. Dynamics of the multiplicity of mobile an infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Díaz-Muñoz, S. L. Viral coinfection is formed by host ecology and virus–virus interactions throughout various microbial taxa and environments. Virus Evol. 3, vex011 (2017).

  • 93.

    Shriner, D., Rodrigo, A. G., Nickle, D. C. & Mullins, J. I. Pervasive genomic recombination of HIV-1 in vivo. Genetics 167, 1573–1583 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Jacobs, N. T. et al. Incomplete influenza A virus genomes happen regularly however are readily complemented throughout localized viral unfold. Nat. Commun. 10, 1–17 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 95.

    Saira, Ok. et al. Sequence evaluation of in vivo faulty interfering-like RNA of influenza A H1N1 pandemic virus. J. Virol. 87, 8064–8074 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Li, D. et al. Faulty interfering viral particles in acute dengue infections. PLoS ONE 6, e19447 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Gelbart, M. et al. Drivers of within-host genetic range in acute infections of viruses. PLOS Pathogens. 16, e1009029 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Lowen, A. C. It’s within the combine: Reassortment of segmented viral genomes. PLoS Pathog. 14, e1007200 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Martin, M. A., Kaul, D., Tan, G. S., Woods, C. W. & Koelle, Ok. The dynamics of influenza A H3N2 faulty viral genomes from a human problem research. Preprint at bioRxiv https://doi.org/10.1101/814673 (2019).

  • 100.

    Levi, L. I. et al. Faulty viral genomes from chikungunya virus are broad-spectrum antivirals and forestall virus dissemination in mosquitoes. PLoS Pathog. 17, e1009110 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Bull, R. A. et al. Sequential bottlenecks drive viral evolution in early acute hepatitis C virus an infection. PLoS Pathog. 7, e1002243 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Martin, M. A. & Koelle, Ok. Reanalysis of deep-sequencing knowledge from Austria factors in direction of a small SARS- COV-2 transmission bottleneck on the order of 1 to a few virions. Preprint at bioRxiv https://doi.org/10.1101/2021.02.22.432096 (2021).

  • 103.

    McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. Curr. Opin. Virol. 28, 20–25 (2018).

    PubMed 

    Google Scholar
     

  • 104.

    Zwart, M. P. & Elena, S. F. Issues of dimension: genetic bottlenecks in virus an infection and their potential impression on evolution. Annu. Rev. Virol. 2, 161–179 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in major HIV-1 an infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Varble, A. et al. Influenza A virus transmission bottlenecks are outlined by an infection route and recipient host. Cell Host Microbe 16, 691–700 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Sexton, N. R. et al. Genome quantity and dimension polymorphism in zika virus infectious models. J. Virol. 95, e00787-20 (2021).

  • 108.

    Sanjuán, R. Collective infectious models in viruses. Traits Microbiol 25, 402–412 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 109.

    Potter, J. N., Faulkner, P. & MacKinnon, E. A. Pressure choice throughout serial passage of Trichoplusia in nuclear polyhedrosis virus. J. Virol. 18, 1040–1050 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Andersen, S. B. et al. Privatisation rescues perform following lack of cooperation. eLife 7, e38594 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore dishonest and dishonest resistance form competitors for iron in soil and freshwater Pseudomonas communities. Nat. Commun. 8, 1–12 (2017).

    ADS 

    Google Scholar
     

  • 112.

    Ostrowski, E. A. Imposing cooperation within the social amoebae. Curr. Biol. 29, R474–R484 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    DePolo, N. J., Giachetti, C. & Holland, J. J. Persevering with coevolution of virus and faulty interfering particles and of viral genome sequences throughout undiluted passages: virus mutants exhibiting almost full resistance to previously dominant faulty interfering particles. J. Virol. 61, 454–464 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Doceul, V., Hollinshead, M., van der Linden, L. & Smith, G. L. Repulsion of superinfecting virions: a mechanism for fast virus unfold. Science 327, 873–876 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 115.

    Folimonova, S. Y. Superinfection exclusion is an energetic virus-controlled perform that requires a selected viral protein. J. Virol. 86, 5554–5561 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation charges. J. Virol. 84, 9733–9748 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Spiegelman, S., Haruna, I., Holland, I. B., Beaudreau, G. & Mills, D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc. Natl Acad. Sci. USA 54, 919–927 (1965).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Lythgoe, Ok. A., Gardner, A., Pybus, O. G. & Grove, J. Quick-sighted virus evolution and a germline speculation for power viral infections. Traits Microbiol 25, 336–348 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Elena, S. F. & Sanjuán, R. Virus evolution: insights from an experimental strategy. Annu. Rev. Ecol. Evol. Syst. 38, 27–52 (2007).


    Google Scholar
     

  • 120.

    Giri, L., Feiss, M. G., Bonning, B. C. & Murhammer, D. W. Manufacturing of baculovirus faulty interfering particles throughout serial passage is delayed by eradicating transposon goal websites in fp25k. J. Gen. Virol. 93, 389–399 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    dos Santos, M., Ghoul, M. & West, S. A. Pleiotropy, cooperation, and the social evolution of genetic structure. PLoS Biol. 16, e2006671 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Pfaller, C. Ok. et al. Measles virus faulty interfering RNAs are generated regularly and early within the absence of C protein and may be destabilized by adenosine deaminase appearing on RNA-1-Like hypermutations. J. Virol. 89, 7735–7747 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Jaworski, E. & Routh, A. Parallel ClickSeq and Nanopore sequencing elucidates the fast evolution of defective-interfering RNAs in Flock Home virus. PLoS Pathog. 13, e1006365 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Gardner, A. & Grafen, A. Capturing the superorganism: a proper principle of group adaptation. J. Evol. Biol. 22, 659–671 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Andino, R. & Domingo, E. Viral quasispecies. Virology 479–480, 46–51 (2015).

    PubMed 

    Google Scholar
     

  • 126.

    Vasilijevic, J. et al. Lowered accumulation of faulty viral genomes contributes to extreme final result in influenza virus contaminated sufferers. PLoS Pathog. 13, e1006650 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Dong, X. et al. Variation across the dominant viral genome sequence contributes to viral load and final result in sufferers with Ebola virus illness. Genome Biol. 21, 238 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Valesano, A. L. et al. Temporal dynamics of SARS-CoV-2 mutation accumulation inside and throughout contaminated hosts. PLOS Pathogens. 17 e1009499 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Lauring, A. S. Inside-host viral range: a window into viral evolution. Annu. Rev. Virol. 7, 63–81 (2020).

  • 130.

    Metzger, V. T., Lloyd-Smith, J. O. & Weinberger, L. S. Autonomous focusing on of infectious superspreaders utilizing engineered transmissible therapies. PLoS Comput. Biol. 7, e1002015 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Dimmock, N. J. & Easton, A. J. Faulty interfering influenza virus RNAs: time to reevaluate their scientific potential as broad-spectrum antivirals? J. Virol. 88, 5217–5227 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Gu, S. et al. Competitors for iron drives phytopathogen management by pure rhizosphere microbiomes. Nat. Microbiol. 1–9, https://doi.org/10.1038/s41564-020-0719-8 (2020).

  • 133.

    Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. Social evolution in micro-organisms and a Computer virus strategy to medical intervention methods. Philos. Trans. R. Soc. B Biol. Sci. 364, 3157–3168 (2009).


    Google Scholar
     

  • 134.

    Zhao, H. et al. Twin-functional peptide with faulty interfering genes successfully protects mice towards avian and seasonal influenza. Nat. Commun. 9, 2358 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Noble, S. & Dimmock, N. J. Faulty interfering sort A equine influenza virus (H3N8) protects mice from morbidity and mortality attributable to homologous and heterologous subtypes of influenza A virus. J. Gen. Virol. 75, 3485–3491 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Weinberger, L. S. & Notton, T. J. Strategies and compositions for producing a deletion library and for figuring out a faulty interfering particle (DIP). United States Patent Software 20210024921. (2021).

  • 137.

    Johnson, D. M., Cubitt, B., Pfeffer, T. L., de la Torre, J. C. & Lukashevich, I. S. Lassa virus vaccine candidate ML29 generates truncated viral RNAs which contribute to interfering exercise and attenuation. Viruses 13, 214 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Rand, U. et al. Antiviral exercise of influenza a virus faulty interfering particles towards SARS-CoV-2 replication in vitro by way of stimulation of innate immunity. Cells. 10, 1756 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Yao, S., Narayanan, A., Majowicz, S. A., Jose, J. & Archetti, M. An artificial faulty interfering SARS-CoV-2. PeerJ 9, e11686 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Zhang, Y. et al. Influenza analysis database: an built-in bioinformatics useful resource for influenza virus analysis. Nucleic Acids Res. 45, D466–D474 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 141.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Grubaugh, N. D. et al. Monitoring virus outbreaks within the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 143.

    Olsen, P. H. English: Reed Warbler Feeding a Widespread Cuckoo Chick in a Nest. Brood Parasitism. (Wikimedia Commons, 2007).

  • 144.

    Baltes, A., Akpinar, F., Inankur, B. & Yin, J. Inhibition of an infection unfold by co-transmitted faulty interfering particles. PLoS ONE 12, e0184029 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    He, L. et al. A conserved RNA construction is crucial for a satellite tv for pc RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz564 (2019).

  • 146.

    Grafen, A. A geometrical view of relatedness. Oxf. Surv. Evol. Biol. 2, 28–89 (1985).


    Google Scholar
     

  • 147.

    Cole, C. N., Smoler, D., Wimmer, E. & Baltimore, D. Faulty interfering particles of poliovirus I. Isolation and bodily properties. J. Virol. 7, 478–485 (1971).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Huang, A. S. & Wagner, R. R. Faulty T particles of vesicular stomatitis virus: II. Biologic function in homologous interference. Virology 30, 173–181 (1966).

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Kawai, A. & Matsumoto, S. Interfering and noninterfering faulty particles generated by a rabies small plaque variant virus. Virology 76, 60–71 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • 150.

    Ram, G. et al. Staphylococcal pathogenicity island interference with helper phage copy is a paradigm of molecular parasitism. Proc. Natl Acad. Sci. USA 109, 16300–16305 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 151.

    Andreu-Moreno, I., Bou, J.-V. & Sanjuán, R. Cooperative nature of viral replication. Sci. Adv. 6, eabd4942 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 152.

    Cole, C. N. & Baltimore, D. Faulty interfering particles of poliovirus: II. Nature of the defect. J. Mol. Biol. 76, 325–343 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Cole, C. N. & Baltimore, D. Faulty interfering particles of poliovirus: III. Interference and enrichment. J. Mol. Biol. 76, 345–361 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Track, Y., Paul, A. V. & Wimmer, E. Evolution of poliovirus faulty interfering particles expressing gaussia luciferase. J. Virol. 86, 1999–2010 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Cole, C. N. & Baltimore, D. Faulty interfering particles of poliovirus IV. Mechanisms of enrichment. J. Virol. 12, 1414–1426 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *