in

Ecogenomics reveals viral communities across the Challenger Deep oceanic trench

  • Suttle, C. A. Marine viruses — main gamers within the international ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Angly, F. E. et al. The marine viromes of 4 oceanic areas. PLOS Biol. 4, 2121–2131 (2006).

    CAS 

    Google Scholar
     

  • Labonté, J. M. & Suttle, C. A. Beforehand unknown and extremely divergent ssDNA viruses populate the oceans. ISME J. 7, 2169–2177 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).

    PubMed 

    Google Scholar
     

  • Roux, S. et al. Ecogenomics and potential biogeochemical impacts of worldwide considerable ocean viruses. Nature 537, 689–693 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Allen, L. Z. et al. The Baltic sea virome: variety and transcriptional exercise of DNA and RNA viruses. mSystems 2, e00125–00116 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses within the sunlit and darkish ocean. Genome Biol. 14, R123 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-G. et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc. Natl Acad. Sci. USA 116, 15645–15650 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danovaro, R. et al. Main viral affect on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Danovaro, R. et al. Viriobenthos in freshwater and marine sediments: a assessment. Freshw. Biol. 53, 1186–1213 (2008).


    Google Scholar
     

  • Engelhardt, T., Kallmeyer, J., Cypionka, H. & Engelen, B. Excessive virus-to-cell ratios point out ongoing manufacturing of viruses in deep subsurface sediments. ISME J. 8, 1503–1509 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Middelboe, M., Glud, R. N. & Filippini, M. Viral abundance and exercise within the deep sub-seafloor biosphere. Aquat. Micro. Ecol. 63, 1–8 (2011).


    Google Scholar
     

  • Li, Z. et al. Deep sea sediments related to chilly seeps are a subsurface reservoir of viral variety. ISME J. 15, 2366–2378 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X. et al. Extraordinary variety of viruses in deep-sea sediments as revealed by metagenomics with out prior virion separation. Environ. Microbiol 23, 728–743 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Helton, R. R., Liu, L. & Wommack, Ok. E. Evaluation of things influencing direct enumeration of viruses inside estuarine sediments. Appl Environ. Microbiol 72, 4767–4774 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, D., Morono, Y., Inagaki, F. & Takai, Ok. An improved technique for extracting viruses from sediment: detection of way more viruses within the subseafloor than beforehand reported. Entrance Microbiol 10, 878 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armanious, A. et al. Viruses at strong–water interfaces: a scientific evaluation of interactions driving adsorption. Environ. Sci. Technol. 50, 732–743 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Trubl, G. et al. Optimization of viral resuspension strategies for carbon-rich soils alongside a permafrost thaw gradient. PeerJ 4, e1999 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maat, D. S., Prins, M. A. & Brussaard, C. P. D. Sediments from arctic tide-water glaciers take away coastal marine viruses and delay host an infection. Viruses 11, 123 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Loveland, J. P., Ryan, J. N., Amy, G. L. & Harvey, R. W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A Physicochem. Eng. Asp. 107, 205–221 (1996).

    CAS 

    Google Scholar
     

  • Fuhs, G. W., Chen, M., Sturman, L. S. & Moore, R. S. Virus adsorption to mineral surfaces is lowered by microbial overgrowth and natural coatings. Microb. Ecol. 11, 25–39 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, L. et al. Energetic and various viruses persist within the deep sub-seafloor sediments over 1000’s of years. ISME J. 13, 1857–1864 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manea, E. et al. Viral infections enhance prokaryotic biomass manufacturing and natural C biking in hadal trench sediments. Entrance Microbiol 10, 1952 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danovaro, R. et al. Virus-mediated archaeal hecatomb within the deep seafloor. Sci. Adv. 2, e1600492 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshida, M., Takaki, Y., Eitoku, M., Nunoura, T. & Takai, Ok. Metagenomic evaluation of viral communities in (hado)pelagic sediments. PLoS One 8, e57271 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäckström, D. et al. Virus genomes from deep sea sediments broaden the ocean megavirome and help impartial origins of viral gigantism. mBio 10, e02497–02418 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jian, H. et al. Range and distribution of viruses inhabiting the deepest ocean on Earth. ISME J. 15, 3094–3110 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anantharaman, Ok. et al. Sulfur oxidation genes in various deep-sea viruses. Science 344, 757–760 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Revealing the viral neighborhood within the hadal sediment of the New Britain Trench. Genes 12, 990 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition supplies an essential contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest locations on Earth. Traits Ecol. Evol. 25, 190–197 (2010).

    PubMed 

    Google Scholar
     

  • Glud, R. N. et al. Excessive charges of microbial carbon turnover in sediments within the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).

    CAS 

    Google Scholar
     

  • Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ willpower of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).

    CAS 

    Google Scholar
     

  • Hiraoka, S. et al. Microbial neighborhood and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments throughout the Challenger Deep. PeerJ 7, e6961 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y.-L., Mara, P., Cui, G.-J., Edgcomb, V. P. & Wang, Y. Microbiomes within the Challenger Deep slope and bottom-axis sediments. Nat. Commun. 13, 1515 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marquet M., et al. What the Phage: a scalable workflow for the identification and evaluation of phage sequences. bioRxiv https://www.biorxiv.org/content/10.1101/2020.07.24.219899v1 (2020).

  • Roux, S. et al. Minimal Details about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, A. C. et al. Genomic differentiation amongst wild cyanophages regardless of widespread horizontal gene switch. BMC Genomics 17, 930 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bobay, L.-M. & Ochman, H. Organic species are common throughout life’s domains. Genome Biol. Evol. 9, 491–501 (2017).

    PubMed Central 

    Google Scholar
     

  • Nayfach S., et al. CheckV assesses the standard and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2020).

  • Bin Jang, H. et al. Taxonomic project of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).


    Google Scholar
     

  • Dalcin Martins, P. et al. Viral and metabolic controls on excessive charges of microbial sulfur and carbon biking in wetland ecosystems. Microbiome 6, 138 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emerson, J. B. et al. Host-linked soil viral ecology alongside a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. Novel viral communities probably helping in carbon, nitrogen, and sulfur metabolism within the higher slope sediments of Mariana Trench. mSystems 7, e01358–01321 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Walker, P. J. et al. Modifications to virus taxonomy and to the Worldwide Code of Virus Classification and Nomenclature ratified by the Worldwide Committee on Taxonomy of Viruses (2021). Arch. Virol. 166, 2633–2648 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kieft, Ok., Zhou, Z. & Anantharaman, Ok. VIBRANT: automated restoration, annotation and curation of microbial viruses, and analysis of viral neighborhood operate from genomic sequences. Microbiome 8, 90 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, A. C. et al. The intestine virome database reveals age-dependent patterns of virome variety within the human intestine. Cell Host Microbe 28, 724–740 e728 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, Y. et al. Environmental viral genomes shed new mild on virus-host interactions within the ocean. mSphere 2, e00359–00316 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vik, D. R. et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ 5, e3428 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pachiadaki, M. G. et al. Main position of nitrite-oxidizing micro organism in darkish ocean carbon fixation. Science 358, 1046–1051 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Daly, R. A. et al. Viruses management dominant micro organism colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles within the sea: viruses play vital roles within the construction and performance of aquatic meals webs. BioScience 49, 781–788 (1999).


    Google Scholar
     

  • Peoples, L. M. et al. Microbial neighborhood variety inside sediments from two geographically separated hadal trenches. Entrance. Microbiol. 10, 347 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mara, P. et al. Viral components and their potential affect on microbial processes alongside the completely stratified Cariaco Basin redoxcline. ISME J. 14, 3079–3092 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitbart, M., Thompson, L. R., Suttle, C. A. & Sullivan, M. B. Exploring the huge variety of marine viruses. Oceanography 20, 135–139 (2007).


    Google Scholar
     

  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 internet portal for protein modeling, prediction and evaluation. Nat. Protoc. 10, 845–858 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubino, F. M. Toxicity of glutathione-binding metals: a assessment of targets and mechanisms. Toxics 3, 20–62 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jozefczak, M., Remans, T., Vangronsveld, J. & Cuypers, A. Glutathione is a key participant in metal-induced oxidative stress defenses. Int J. Mol. Sci. 13, 3145–3175 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Methylmercury bioaccumulation in deepest ocean fauna: implications for ocean mercury biotransport by means of meals webs. Environ. Sci. Technol. Lett. 7, 469–476 (2020).

    CAS 

    Google Scholar
     

  • Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. Excessive-density factor concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. et al. Revealing the total biosphere construction and versatile metabolic features within the deepest ocean sediment of the Challenger Deep. Genome Biol. 22, 207 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, A. H. & Raetz, C. R. H. Structural foundation for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. Proc. Natl Acad. Sci. USA 104, 13543–13550 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad, S., Raza, S., Abro, A., Liedl, Ok. R. & Azam, S. S. Towards novel inhibitors in opposition to KdsB: a extremely particular and selective broad-spectrum bacterial enzyme. J. Biomol. Struct. Dyn. 37, 1326–1345 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gronow, S., Brabetz, W. & Brade, H. Comparative practical characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur. J. Biochem. 267, 6602–6611 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Abeyrathne, P. D., Daniels, C., Poon, Ok. Ok. H., Matewish, M. J. & Lam, J. S. Purposeful characterization of WaaL, a ligase related to linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa Lipopolysaccharide. J. Bacteriol. 187, 3002–3012 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kneidinger, B. et al. Biosynthesis pathway of ADP-l-glycero-β-manno-heptose in Escherichia coli. J. Bacteriol. 184, 363–369 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: Signature options and ecological interpretations. Plos Biol. 3, 790–806 (2005).

    CAS 

    Google Scholar
     

  • Sullivan, M. B. et al. Genomic evaluation of oceanic cyanobacterial myoviruses in contrast with T4-like myoviruses from various hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auer, G. Ok. & Weibel, D. B. Bacterial cell mechanics. Biochemistry 56, 3710–3724 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Castelán-Sánchez, H. G. et al. Extremophile deep-sea viral communities from hydrothermal vents: structural and practical evaluation. Mar. Genomics 46, 16–28 (2019).

    PubMed 

    Google Scholar
     

  • Chothi, M. P. et al. Identification of an L-rhamnose artificial pathway in two nucleocytoplasmic massive DNA viruses. J. Virol. 84, 8829–8838 (2010).

    CAS 

    Google Scholar
     

  • Bachy C., et al. Viruses infecting a heat water picoeukaryote make clear spatial co-occurrence dynamics of marine viruses and their hosts. ISME J. 15, 3129–3147 (2021).

  • Zhang, W. et al. 4 novel algal virus genomes found from Yellowstone Lake metagenomes. Sci. Rep. 5, 15131 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clerissi, C. et al. Prasinovirus distribution within the Northwest Mediterranean Sea is affected by the setting and significantly by phosphate availability. Virology 466–467, 146–157 (2014).

    PubMed 

    Google Scholar
     

  • Mistou, M. Y., Sutcliffe, I. C. & van Sorge, N. M. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive micro organism. FEMS Microbiol. Rev. 40, 464–479 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Michael, V. et al. Biofilm plasmids with a rhamnose operon are broadly distributed determinants of the ‘swim-or-stick’ life-style in roseobacters. ISME J. 10, 2498–2513 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Weinbauer, M. G., Jiao, N. & Zhang, R. Revisiting marine lytic and lysogenic virus-host interactions: Kill-the-Winner and Piggyback-the-Winner. Sci. Bull. 66, 871–874 (2021).

    CAS 

    Google Scholar
     

  • Breitbart, M., Bonnain, C., Malki, Ok. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Howard-Varona, C., Hargreaves, Ok. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, affect and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: quick and correct filtering of ribosomal RNAs in metatranscriptomic knowledge. Bioinformatics 28, 3211–3217 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Salter, S. J. et al. Reagent and laboratory contamination can critically affect sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Quick gapped-read alignment with Bowtie 2. Nat. Strategies 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a brand new genome meeting algorithm and its functions to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z.-M. et al. In situ meta-omic insights into the neighborhood compositions and ecological roles of hadal microbes within the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pratama A. A., et al. Increasing requirements in viromics: in silico analysis of dsDNA viral genome identification, classification, and auxiliary metabolic gene. PeerJ 9, e11447 (2021).

  • Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a instrument for prediction of bacteriophage sequences in metagenomic bins. Entrance Genet. 9, 304 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A. & Solar, F. VirFinder: a novel k-mer primarily based instrument for figuring out viral sequences from assembled metagenomic knowledge. Microbiome 5, 69 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Z., et al. PPR-Meta: a instrument for figuring out phages and plasmids from metagenomic fragments utilizing deep studying. GigaScience 8, giz066 (2019).

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral sign from microbial genomic knowledge. PeerJ 3, e985 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurtz, V. I., Villarroel, J., Lund, O., Voldby Larsen, M. & Nielsen, M. MetaPhinder—figuring out bacteriophage sequences in metagenomic knowledge units. PLoS One 11, e0163111 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J. et al. Figuring out viruses from metagenomic knowledge utilizing deep studying. Quant. Biol. 8, 64–77 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelkareem A. O., Khalil M. I., Elaraby M., Abbas H. & Elbehery A. H. A. VirNet: deep consideration mannequin for viral reads identification. In: 2018 thirteenth Worldwide Convention on Laptop Engineering and Methods (ICCES) (2018).

  • Starikova, E. V. et al. Phigaro: high-throughput prophage sequence annotation. Bioinformatics 36, 3882–3884 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J. et al. VirSorter2: a multi-classifier, expert-guided strategy to detect various DNA and RNA viruses. Microbiome 9, 37 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V. Seeker: alignment-free identification of bacteriophage genomes by deep studying. Nucleic Acids Res. 48, e121–e121 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology useful resource primarily based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2018).

    PubMed Central 

    Google Scholar
     

  • Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic knowledge. Nat. Protoc. 12, 1673–1682 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, S.-M. et al. Depth-related variability in viral communities in extremely stratified sulfidic mine tailings. Microbiome 8, 89 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudek, N. Ok., Solar, C., Burstein, D., Kantor, R. & Relman, D. Novel microbial variety and practical potential within the marine mammal oral microbiome. Curr. Biol. 27, 3752–3762.e3756 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing knowledge. Bioinformatics 28, 3150–3152 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shkoporov, A. N. et al. The human intestine virome is extremely various, steady, and particular person particular. Cell Host Microbe 26, 527–541.e525 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation website identification. BMC Bioinform. 11, 119 (2010).


    Google Scholar
     

  • Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome operate. Nucleic Acids Res. 48, 8883–8900 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, Ok. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and value. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a instrument for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: latest updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I., Khedkar, S. & Bork, P. SMART: latest updates, new developments and standing in 2020. Nucleic Acids Res. 49, D458–D460 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Skennerton, C. T., Imelfort, M. & Tyson, G. W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic knowledge. Nucleic Acids Res. 41, e105 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bland, C. et al. CRISPR recognition instrument (CRT): a instrument for computerized detection of clustered repeatedly interspaced palindromic repeats. BMC Bioinform. 8, 209 (2007).


    Google Scholar
     

  • Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of switch RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galiez, C., Siebert, M., Enault, F., Vincent, J. & Söding, J. WIsH: who’s the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33, 3113–3114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H. Aligning sequence reads, clone sequences and meeting contigs with BWA-MEM. Preprint at https://ui.adsabs.harvard.edu/abs/2013arXiv1303.3997L (2013).

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wessel, P. et al. The Generic Mapping Instruments model 6. Geochem. Geophys. Geosystems 20, 5556–5564 (2019).


    Google Scholar
     

  • Tozer, B. et al. World bathymetry and topography at 15 Arc Sec: SRTM15+. Earth Area Sci. 6, 1847–1864 (2019).


    Google Scholar
     

  • Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Loading…

    0

    Transition of Branch County senior nutrition services to COA gets underway | WTVB | 1590 AM · 95.5 FM

    Here’s How it Works- HealthifyMe