Evidence of hybrid breakdown among invasive hybrid cattails (Typha × glauca)

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N et al. (2013) Hybridization and speciation. J Evol Biol 26:229–246

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abbott RJ, Brennan AC (2014) Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc B 369:20130346

    Article 

    Google Scholar
     

  • Abbott RJ (2017) Plant speciation throughout environmental gradients and the prevalence and nature of hybrid zones. J Syst Evol 55:238–258

    Article 

    Google Scholar
     

  • Ahee J (2013) The spatial dynamics of wind pollination in broadleaf cattail (Typha latifolia). MSc Thesis. Trent College, Canada


    Google Scholar
     

  • Ahee JE, Van Drunen WE, Dorken ME (2015) Evaluation of pollination neighbourhood dimension utilizing spatial evaluation of pollen and seed manufacturing in broadleaf cattail (Typha latifolia). Botany 93:91–100

    Article 

    Google Scholar
     

  • Bansal S, Lishawa SC, Newman S, Tangen BA, Wilcox D, Albert D et al. (2019) Typha (cattail) invasion in North American wetlands: Biology, regional issues, impacts, ecosystem companies, and administration. Wetlands 39:645–684

    Article 

    Google Scholar
     

  • Barton NH (2001) The position of hybridization in evolution. Mol Ecol 10:551–568

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barton NH (2008) The impact of a barrier to gene movement on patterns of geographic variation. Genet Res 90:139–149

    CAS 
    Article 

    Google Scholar
     

  • Barton NH, Hewitt GM (1985) Evaluation of hybrid zones. Ann Rev Ecol Syst 16:113–148

    Article 

    Google Scholar
     

  • Bates D, Maechler M, Bolker B (2016) lme4: Linear mixed-effects fashions utilizing Eigen and S4. R package deal model o1.1–13, http://CRAN.R-project.org/package-lme4

  • Behm JE, Ives AR, Boughman JW (2010) Breakdown in postmating isolation and the collapse of a species pair via hybridization. Am Nat 175:11–26

    PubMed 
    Article 

    Google Scholar
     

  • Bersweden L, Viruel J, Schatz B, Harland J, Gargiulo R, Cowan RS et al. (2021) Microsatellites and petal morphology reveal new patterns of admixture in Orchis hybrid zones. Am J Bot 108:1388–1404

    PubMed 
    Article 

    Google Scholar
     

  • Buggs RJA (2007) Empirical research of hybrid zone motion. Heredity 99:301–312

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bunbury-Blanchette AL, Freeland JR, Dorken ME (2015) Hybrid Typha× glauca outperforms native T. latifolia underneath contrasting water depths in a typical backyard. Primary Appl Ecol 16:394–402

    Article 

    Google Scholar
     

  • Burton RS, Pereira RJ, Barreto FS (2013) Cytonuclear genomic interactions and hybrid breakdown. Ann Rev Ecol Evol Syst 44:281–302

    Article 

    Google Scholar
     

  • Buitink J, Claessens MM, Hemminga MA, Hoekstra FA (1998) Affect of water content material and temperature on molecular mobility and intracellular glasses in seeds and pollen. Plant Phys 118:531–541

    CAS 
    Article 

    Google Scholar
     

  • Ciotir C, Kirk H, Row JR, Freeland JR (2013) Intercontinental dispersal of T. angustifolia and T. latifolia between Europe and North America has implications for the Typha invasions. Biol Invasions 15:1377–1390

    Article 

    Google Scholar
     

  • Ciotir C, Szabo J, Freeland J (2017) Genetic characterization of cattail species and hybrids (Typha spp.) in Europe. Aquat Bot 141:51–59

    CAS 
    Article 

    Google Scholar
     

  • Curry CM (2015) An built-in framework for hybrid zone fashions. Evol Biol 42:359–365

    Article 

    Google Scholar
     

  • Durán-Castillo M, Hudson A, Wilson Y, Discipline DL, Twyford AD (2022) A phylogeny of Antirrhinum reveals parallel evolution of alpine morphology. N. Phytol 233:1426–1439

    Article 
    CAS 

    Google Scholar
     

  • Fishman L, Sweigart AL (2018) When two rights make a fallacious: The evolutionary genetics of plant hybrid incompatibilities. Ann Rev Plant Biol 69:707–731

    CAS 
    Article 

    Google Scholar
     

  • Fox J, Weisberg S (2019) An R Companion to Utilized Regression, third edn. Sage, Thousand Oaks, CA


    Google Scholar
     

  • Freeland J, Ciotir C, Kirk H (2013) Regional variations within the abundance of native, launched, and hybrid Typha spp. in northeastern North America affect wetland invasions. Biol Invasions 15:2651–2665

    Article 

    Google Scholar
     

  • Freeland JR, Ciotir C, Wensink L, Dorken M (2017) Widespread cytonuclear discordance in narrow-leaved cattail (Typha angustifolia) doesn’t clarify the dominance of its invasive hybrid (Typha × glauca). Hydrobiologia 792:53–65

    CAS 
    Article 

    Google Scholar
     

  • Grace JB, Harrison JS (1986) The biology of Canadian weeds: 73. Typha latifolia L., Typha angustifolia L. and Typha x glauca. Can J Plan Sci 361–379

  • Irwin DE (2020) Assortative mating in hybrid zones is remarkably ineffective in selling speciation. Am Nat 195:E150–E167

    PubMed 
    Article 

    Google Scholar
     

  • Johansen‐Morris AD, Latta RG (2006) Health penalties of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution 60:1585–1595

    PubMed 
    Article 

    Google Scholar
     

  • Kirk H, Connolly C, Freeland JR (2011) Molecular genetic information reveal hybridization between Typha angustifolia and Typha latifolia throughout a broad spatial scale in japanese North America. Aquat Bot 95:189–193

    Article 

    Google Scholar
     

  • Kuehn MM, Minor JE, White BN (1999) An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia utilizing random amplified polymorphic DNA and chloroplast DNA markers. Mol Ecol 8:1981–1990

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Larkin DJ, Freyman MJ, Lishawa SC, Geddes P, Tuchman NC (2012) Mechanisms of dominance by the invasive hybrid cattail Typha× glauca. Biol Invasions 14:65–77

    Article 

    Google Scholar
     

  • Lenth R, Singmann H, Love J, Buerkner P, Herve M (2021) Emmeans: Estimated marginal means, aka least-squares means. R package deal model, 1.7.1–1

  • Marques I, Nieto Feliner G, Martins‐Loução MA, Fuertes Aguilar J (2011) Health in Narcissus hybrids: low fertility is overcome by early hybrid vigour, absence of exogenous choice and excessive bulb propagation. J Ecol 99:1508–1519

    Article 

    Google Scholar
     

  • Mitchell N, Luu H, Owens GL, Rieseberg LH, Whitney KD (2022) Hybrid evolution repeats itself throughout environmental contexts in Texas sunflowers (Helianthus). Evolution https://doi.org/10.1111/evo.14536

  • McKenzie‐Gopsill A, Kirk H, Van Drunen W, Freeland JR, Dorken ME (2012) No proof for area of interest segregation in a North American Cattail (Typha) species complicated. Ecol Evol 2:952–961

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orr HA (1995) The inhabitants genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pieper SJ, Nicholls AA, Freeland JR, Dorken ME (2017) Uneven hybridization in cattails (Typha spp.) and its implications for the evolutionary upkeep of native Typha latifolia. J Hered 108:479–487

    PubMed 
    Article 

    Google Scholar
     

  • Pieper SJ, Freeland JR, Dorken ME (2018) Coexistence of Typha latifolia, T. angustifolia (Typhaceae) and their invasive hybrid just isn’t defined by area of interest partitioning throughout water depths. Aquat Bot 144:46–53

    Article 

    Google Scholar
     

  • Pieper S, Dorken M, Freeland J (2020) Genetic construction in hybrids and progenitors offers perception into processes underlying an invasive cattail (Typha× glauca) hybrid zone. Heredity 124:714–725

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • R Core Improvement Staff (2021) R: A language and setting for statistical computing v. 4.1.0. R Basis for Statistical Computing, Vienna, Austria, http://www.R-project.org/


    Google Scholar
     

  • Rasband WS (2014) ImageJ, U.S. Nationwide Institutes of Well being, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/,1997-2014


    Google Scholar
     

  • Rendón-Anaya M, Wilson J, Sveinsson S, Fedorkov A, Cottrell J, Bailey MES et al. (2021) Adaptive introgression facilitates adaptation to excessive latitudes in European Aspen (Populus tremula L.). Mol Biol Evol 38:5034–5050

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rieseberg LH (2006) Hybrid speciation in wild sunflowers. Ann Mo Bot 93:34–48

    Article 

    Google Scholar
     

  • Ross RIC, Ågren JA, Pannell JR (2012) Exogenous choice shapes germination behaviour and seedling traits of populations at totally different altitudes in a Senecio hybrid zone. Ann Bot 110:1439–1447

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Runemark A, Vallejo-Marin M, Meier JI (2019) Eukaryote hybrid genomes. PLoS Genet 15:e1008404

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Smith SG (1967) Experimental and pure hybrids in North American Typha (Typhaceae). Am Midl Nat 78:257–287

    Article 

    Google Scholar
     

  • Snow AA, Travis SE, Wildová R, Fér T, Sweeney PM, Marburger JE et al. (2010) Species‐ particular SSR alleles for research of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. Am J Bot 97:2061–2067

    PubMed 
    Article 

    Google Scholar
     

  • Stebbins GL (1959) The position of hybridization in evolution. Proc Am Philos Soc 103:231–251


    Google Scholar
     

  • Tangen B, Bansal S, Freeland J, Travis S, Wasko J, McGonigle et al. (2021) Distributions of native and invasive Typha (cattail) all through the Prairie Pothole Area of North America. Wetl Ecol Manag 30:1–17

    Article 
    CAS 

    Google Scholar
     

  • Tiffin P, Olsen S, Moyle LC (2001) Asymmetrical crossing obstacles in angiosperms. Proc R Soc Lond B 268:861–867

    CAS 
    Article 

    Google Scholar
     

  • Tisshaw Ok, Freeland J, Dorken M (2020) Salinity, not genetic incompatibilities, limits the institution of the invasive hybrid cattail Typha × glauca in coastal wetlands. Ecol Evol 10:12091–12103

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S et al. (2016) Hybridization and extinction. Evol Appl 9:892–908

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Travis SE, Marburger JE, Windels S, Kubatova B (2010) Hybridization dynamics of invasive cattail (Typhaceae) stands within the Western Nice Lakes Area of North America: a molecular evaluation. J Ecol 98:7–16

    Article 

    Google Scholar
     

  • Travis SE, Marburger JE, Windels SK, Kubátová B (2011) Clonal construction of invasive cattail (Typhaceae) stands within the Higher Midwest Area of the US. Wetlands 31:221–228

    Article 

    Google Scholar
     

  • Tsyusko‐Omeltchenko OV, Schable NA, Smith MH, Glenn TC (2003) Microsatellite loci remoted from slender‐leaved cattail Typha angustifolia. Mol Ecol Notes 3:535–538

    Article 
    CAS 

    Google Scholar
     

  • Tuchman NC, Larkin DJ, GeddesP, Wildova R, Jankowski Ok, Goldberg DE (2009) Patterns of environmental change related to Typha × glauca invasion in a Nice Lakes coastal wetland. Wetlands 29:964–975

    Article 

    Google Scholar
     

  • Zalmat AS, Sotola AV, Good CC, Martin NH (2021) Genetic construction in Louisiana Iris species reveals patterns of latest and historic admixture. Am J Bot 108:2257–2268

    PubMed 
    Article 

    Google Scholar
     

  • Zapfe L, Freeland JR (2015) Heterosis in invasive F1 cattail hybrids (Typha× glauca). Aquat Bot 125:44–47

    Article 

    Google Scholar
     

  • Zhou B, Yu D, Ding Z, Xu X (2016) Comparability of genetic variety in 4 Typha species (Poales, Typhaceae) from China. Hydrobiologia 770:117–128

    CAS 
    Article 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *