in

Explainable machine learning models of major crop traits from satellite-monitored continent-wide field trial data

  • 1.

    United Nations Division of Financial and Social Affairs. World Inhabitants Prospects: 2015 Revision (United Nations, 2016).

  • 2.

    Burgueño, J., de los Campos, G., Weigel, Ok. & Crossa, J. Genomic prediction of breeding values when modeling genotype × surroundings interplay utilizing pedigree and dense molecular markers. Crop Sci. 52, 707–719 (2012).

    Article 

    Google Scholar
     

  • 3.

    Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M. D. & Luis Araus, J. Excessive-throughput phenotyping and genomic choice: the frontiers of crop breeding converge. J. Integr. Plant Biol. 54, 312–320 (2012).

  • 4.

    Zamir, D. The place have all of the crop phenotypes gone? PLoS Biol. 11, e1001595 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Newman, S. J. & Furbank, R. T. A a number of species, continent-wide, million-phenotype agronomic plant dataset. Sci. Information 8, 116 (2021).

  • 6.

    NVT Protocols v1.1. 75 (Grains Analysis and Improvement Company) https://nvt.grdc.com.au/trials/nvt-protocols (2020).

  • 7.

    Newman, S. J. & Furbank, R. T. Continent-wide Agronomic Experiment Information (figshare, 2021); https://doi.org/10.6084/m9.figshare.c.5296369

  • 8.

    Justice, C. O. et al. Land and cryosphere merchandise from Suomi NPP VIIRS: overview and standing. J. Geophys. Res. Atmos. 118, 9753–9765 (2013).

    Article 

    Google Scholar
     

  • 9.

    Cohen, W. B. & Justice, C. O. Validating MODIS terrestrial ecology merchandise: linking in situ and satellite tv for pc measurements. Distant Sens. Environ. 70, 1–3 (1999).

    Article 

    Google Scholar
     

  • 10.

    Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.-L. High quality evaluation and validation of the MODIS international land floor temperature. Int. J. Distant Sens. 25, 261–274 (2004).

    Article 

    Google Scholar
     

  • 11.

    Huete, A. et al. Overview of the radiometric and biophysical efficiency of the MODIS vegetation indices. Distant Sens. Environ. 83, 195–213 (2002).

    Article 

    Google Scholar
     

  • 12.

    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m lively fireplace detection information product: algorithm description and preliminary evaluation. Distant Sens. Environ. 143, 85–96 (2014).

    Article 

    Google Scholar
     

  • 13.

    Deng, H. Deciphering tree ensembles with inTrees. Int. J. Information Sci. Anal. 7, 277–287 (2019).

    Article 

    Google Scholar
     

  • 14.

    Breiman, L. & Cutler, A. randomForest: Breiman and Cutler’s random forests for classification and regression. R package deal model 4.6-14 https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (2012).

  • 15.

    Breiman, L. Random forests. Mach. Be taught. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • 16.

    Friedman, J. H. Grasping operate approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    Article 

    Google Scholar
     

  • 17.

    Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Bushes (Chapman and Corridor, 1984).

  • 18.

    Cortes, C. & Vapnik, V. Assist-vector networks. Mach. Be taught. 20, 273–297 (1995).


    Google Scholar
     

  • 19.

    Steinwart, I. & Thomann, P. liquidSVM. R package deal model 1.2.4 https://cran.r-project.org/package=liquidSVM (2017).

  • 20.

    Mevik, B. H. & Wehrens, R. The pls package deal: principal part and partial least squares regression in R. J. Stat. Softw. https://doi.org/10.18637/jss.v018.i02 (2007).

  • 21.

    Schymanski, S. J., Or, D. & Zwieniecki, M. Stomatal management and leaf thermal and hydraulic capacitances underneath speedy environmental fluctuations. PLoS ONE 8, e54231 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Vialet-Chabrand, S. & Lawson, T. Dynamic leaf vitality steadiness: deriving stomatal conductance from thermal imaging in a dynamic surroundings. J. Exp. Bot. 70, 2839–2855 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Gonzalez-Dugo, M. P. et al. A comparability of operational distant sensing-based fashions for estimating crop evapotranspiration. Agric. Meteorol. 149, 1843–1853 (2009).

    Article 

    Google Scholar
     

  • 24.

    Meals Balances (2014-) (FAO, 2016); http://faostat3.fao.org/download/FB/FBS/E

  • 25.

    Sánchez-Azofeifa, A. et al. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) utilizing high-resolution distant sensing imagery. Sensors 11, 3831–3851 (2011).

    Article 

    Google Scholar
     

  • 26.

    Furbank, R. T., Sirault, X. R. R. & Stone, E. in Sustaining International Meals Safety: The Nexus of Science and Coverage (ed. Zeigler R. S.) 203–223 (CSIRO Publishing, 2019).

  • 27.

    Alcorn, M. A. et al. in Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 4840–4849 (IEEE, 2019). https://doi.org/10.1109/CVPR.2019.00498

  • 28.

    Holloway, E. The unlearnable checkerboard sample. Commun. Blyth Inst. 1, 78–80 (2019).

    Article 

    Google Scholar
     

  • 29.

    Mohri, M. & Medina, A. M. in Algorithmic Studying Idea (eds Bshouty, N.H. et al.)124–138 (Springer Verlag, 2012).

  • 30.

    Lehmann, J., Coumou, D. & Frieler, Ok. Elevated record-breaking precipitation occasions underneath international warming. Clim. Change 132, 501–515 (2015).

    Article 

    Google Scholar
     

  • 31.

    Westra, S. & Sisson, S. A. Detection of non-stationarity in precipitation extremes utilizing a max-stable course of mannequin. J. Hydrol. 406, 119–128 (2011).

    Article 

    Google Scholar
     

  • 32.

    Vaze, J. et al. Local weather non-stationarity—validity of calibrated rainfall-runoff fashions to be used in local weather change research. J. Hydrol. 394, 447–457 (2010).

  • 33.

    Verdon-Kidd, D. C. & Kiem, A. S. Quantifying drought danger in a nonstationary local weather. J. Hydrometeorol. 11, 1019–1031 (2010).

    Article 

    Google Scholar
     

  • 34.

    Milly, P. C. D. et al. Local weather change: stationarity is useless: whither water administration? Science 319, 573–574 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Rosenzweig, C. et al. in Local weather Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 79–131 (Cambridge Univ. Press, 2007).

  • 36.

    Solar, F., Roderick, M. L. & Farquhar, G. D. Rainfall statistics, stationarity, and local weather change. Proc. Natl Acad. Sci. USA 115, 2305–2310 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Lenaerts, B., Collard, B. C. Y. & Demont, M. Bettering international meals safety by accelerated plant breeding. Plant Sci. 287, 110207 (2019).

  • 38.

    McCarl, B., Villavicencio, X. & Wu, X. Local weather change and future evaluation: is stationarity dying? Am. J. Agric. Econ. 90, 1241–1247 (2008).

    Article 

    Google Scholar
     

  • 39.

    Towell, G. G. & Shavlik, J. W. Information-based synthetic neural networks. Artif. Intell. 1, 119–165 (1994).

    Article 

    Google Scholar
     

  • 40.

    Bae, J. Ok. & Kim, J. Combining fashions from neural networks and inductive studying algorithms. Knowledgeable Syst. Appl. 38, 4839–4850 (2011).

    Article 

    Google Scholar
     

  • 41.

    Jamshidian, M. & Jalal, S. Assessments of homoscedasticity, normality, and lacking fully at random for incomplete multivariate information. Psychometrika 75, 649–674 (2010).

    Article 

    Google Scholar
     

  • 42.

    Dong, Y. & Peng, C.-Y. J. Principled lacking information strategies for researchers. Springerplus 2, 222 (2013).

    Article 

    Google Scholar
     

  • 43.

    R Core Crew. R: A Language and Atmosphere for Statistical Computing (R Basis for Statistical Computing, 2013).

  • 44.

    Wright, M. N. & Ziegler, A. Ranger: a quick implementation of random forests for top dimensional information in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Article 

    Google Scholar
     

  • Comments

    Leave a Reply

    Your email address will not be published.

    Loading…

    0

    They’re helping provide the gift of good nutrition

    Amazing Facts That You Must Know About Cannabidiol (CBD)