United Nations Division of Financial and Social Affairs. World Inhabitants Prospects: 2015 Revision (United Nations, 2016).
Burgueño, J., de los Campos, G., Weigel, Ok. & Crossa, J. Genomic prediction of breeding values when modeling genotype × surroundings interplay utilizing pedigree and dense molecular markers. Crop Sci. 52, 707–719 (2012).
Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, M. D. & Luis Araus, J. Excessive-throughput phenotyping and genomic choice: the frontiers of crop breeding converge. J. Integr. Plant Biol. 54, 312–320 (2012).
Zamir, D. The place have all of the crop phenotypes gone? PLoS Biol. 11, e1001595 (2013).
Newman, S. J. & Furbank, R. T. A a number of species, continent-wide, million-phenotype agronomic plant dataset. Sci. Information 8, 116 (2021).
NVT Protocols v1.1. 75 (Grains Analysis and Improvement Company) https://nvt.grdc.com.au/trials/nvt-protocols (2020).
Newman, S. J. & Furbank, R. T. Continent-wide Agronomic Experiment Information (figshare, 2021); https://doi.org/10.6084/m9.figshare.c.5296369
Justice, C. O. et al. Land and cryosphere merchandise from Suomi NPP VIIRS: overview and standing. J. Geophys. Res. Atmos. 118, 9753–9765 (2013).
Cohen, W. B. & Justice, C. O. Validating MODIS terrestrial ecology merchandise: linking in situ and satellite tv for pc measurements. Distant Sens. Environ. 70, 1–3 (1999).
Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.-L. High quality evaluation and validation of the MODIS international land floor temperature. Int. J. Distant Sens. 25, 261–274 (2004).
Huete, A. et al. Overview of the radiometric and biophysical efficiency of the MODIS vegetation indices. Distant Sens. Environ. 83, 195–213 (2002).
Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The New VIIRS 375m lively fireplace detection information product: algorithm description and preliminary evaluation. Distant Sens. Environ. 143, 85–96 (2014).
Deng, H. Deciphering tree ensembles with inTrees. Int. J. Information Sci. Anal. 7, 277–287 (2019).
Breiman, L. & Cutler, A. randomForest: Breiman and Cutler’s random forests for classification and regression. R package deal model 4.6-14 https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (2012).
Breiman, L. Random forests. Mach. Be taught. 45, 5–32 (2001).
Friedman, J. H. Grasping operate approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Bushes (Chapman and Corridor, 1984).
Cortes, C. & Vapnik, V. Assist-vector networks. Mach. Be taught. 20, 273–297 (1995).
Steinwart, I. & Thomann, P. liquidSVM. R package deal model 1.2.4 https://cran.r-project.org/package=liquidSVM (2017).
Mevik, B. H. & Wehrens, R. The pls package deal: principal part and partial least squares regression in R. J. Stat. Softw. https://doi.org/10.18637/jss.v018.i02 (2007).
Schymanski, S. J., Or, D. & Zwieniecki, M. Stomatal management and leaf thermal and hydraulic capacitances underneath speedy environmental fluctuations. PLoS ONE 8, e54231 (2013).
Vialet-Chabrand, S. & Lawson, T. Dynamic leaf vitality steadiness: deriving stomatal conductance from thermal imaging in a dynamic surroundings. J. Exp. Bot. 70, 2839–2855 (2019).
Gonzalez-Dugo, M. P. et al. A comparability of operational distant sensing-based fashions for estimating crop evapotranspiration. Agric. Meteorol. 149, 1843–1853 (2009).
Meals Balances (2014-) (FAO, 2016); http://faostat3.fao.org/download/FB/FBS/E
Sánchez-Azofeifa, A. et al. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) utilizing high-resolution distant sensing imagery. Sensors 11, 3831–3851 (2011).
Furbank, R. T., Sirault, X. R. R. & Stone, E. in Sustaining International Meals Safety: The Nexus of Science and Coverage (ed. Zeigler R. S.) 203–223 (CSIRO Publishing, 2019).
Alcorn, M. A. et al. in Proc. IEEE Pc Society Convention on Pc Imaginative and prescient and Sample Recognition 4840–4849 (IEEE, 2019). https://doi.org/10.1109/CVPR.2019.00498
Holloway, E. The unlearnable checkerboard sample. Commun. Blyth Inst. 1, 78–80 (2019).
Mohri, M. & Medina, A. M. in Algorithmic Studying Idea (eds Bshouty, N.H. et al.)124–138 (Springer Verlag, 2012).
Lehmann, J., Coumou, D. & Frieler, Ok. Elevated record-breaking precipitation occasions underneath international warming. Clim. Change 132, 501–515 (2015).
Westra, S. & Sisson, S. A. Detection of non-stationarity in precipitation extremes utilizing a max-stable course of mannequin. J. Hydrol. 406, 119–128 (2011).
Vaze, J. et al. Local weather non-stationarity—validity of calibrated rainfall-runoff fashions to be used in local weather change research. J. Hydrol. 394, 447–457 (2010).
Verdon-Kidd, D. C. & Kiem, A. S. Quantifying drought danger in a nonstationary local weather. J. Hydrometeorol. 11, 1019–1031 (2010).
Milly, P. C. D. et al. Local weather change: stationarity is useless: whither water administration? Science 319, 573–574 (2008).
Rosenzweig, C. et al. in Local weather Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 79–131 (Cambridge Univ. Press, 2007).
Solar, F., Roderick, M. L. & Farquhar, G. D. Rainfall statistics, stationarity, and local weather change. Proc. Natl Acad. Sci. USA 115, 2305–2310 (2018).
Lenaerts, B., Collard, B. C. Y. & Demont, M. Bettering international meals safety by accelerated plant breeding. Plant Sci. 287, 110207 (2019).
McCarl, B., Villavicencio, X. & Wu, X. Local weather change and future evaluation: is stationarity dying? Am. J. Agric. Econ. 90, 1241–1247 (2008).
Towell, G. G. & Shavlik, J. W. Information-based synthetic neural networks. Artif. Intell. 1, 119–165 (1994).
Bae, J. Ok. & Kim, J. Combining fashions from neural networks and inductive studying algorithms. Knowledgeable Syst. Appl. 38, 4839–4850 (2011).
Jamshidian, M. & Jalal, S. Assessments of homoscedasticity, normality, and lacking fully at random for incomplete multivariate information. Psychometrika 75, 649–674 (2010).
Dong, Y. & Peng, C.-Y. J. Principled lacking information strategies for researchers. Springerplus 2, 222 (2013).
R Core Crew. R: A Language and Atmosphere for Statistical Computing (R Basis for Statistical Computing, 2013).
Wright, M. N. & Ziegler, A. Ranger: a quick implementation of random forests for top dimensional information in C++ and R. J. Stat. Softw. 77, 1–17 (2017).
Comments
Loading…