Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi

  • Hardoim, P. R. et al. The hidden world inside crops: Ecological and evolutionary issues for outlining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. Ok. Plant–microbiome interactions: From neighborhood meeting to plant well being. Nat. Rev. Microbiol. 18, 607–621 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrini, O. Fungal endophytes of tree leaves in Microbial Ecology of Leaves (eds. Andrews, J. H. & Hirano, S. S.) 179–197 (Springer, 1991).

  • Rodriguez, R. J., White, J. F. Jr., Arnold, A. E. & Redman, R. S. Fungal endophytes: Variety and practical roles. New Phytol. 182, 314–330 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bamisile, B. S., Sprint, C. Ok., Akutse, Ok. S., Keppanan, R. & Wang, L. Fungal endophytes: Past herbivore administration. Entrance. Microbiol. 9, 544 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rodriguez, R. J. et al. Stress tolerance in crops through habitat-adapted symbiosis. ISME J. 2, 404–416 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Solar, C. et al. Piriformospora indica confers drought tolerance in Chinese language cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167, 1009–1017 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Arnold, A. E. Understanding the range of foliar endophytic fungi: Progress, challenges, and frontiers. Fungal Biol. Rev. 21, 51–66 (2007).

    Article 

    Google Scholar
     

  • Peterson, R. L. & Massicotte, H. B. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82, 1074–1088 (2004).

    Article 

    Google Scholar
     

  • Wilson, D. Endophyte: The evolution of a time period, and clarification of its use and definition. Oikos 73, 274 (1995).

    Article 

    Google Scholar
     

  • Stone, J. Ok., Bacon, C. W. & White Jr, J. F. An outline of endophytic microbes: Endophytism outlined. in Microbial endophytes 3–29 (Bacon CW, White J, 2000).

  • Qian, X. et al. Leaf and root endospheres harbor decrease fungal variety and fewer complicated fungal co-occurrence patterns than rhizosphere. Entrance. Microbiol. 10, 1015 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Van Lê, A. et al. Ecophylogeny of the endospheric root fungal microbiome of co-occurring Agrostis stolonifera. PeerJ 5, e3454 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Błaszczyk, L., Salamon, S. & Mikołajczak, Ok. Fungi inhabiting the wheat endosphere. Pathogens 10, 1288 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schwery, O. et al. As outdated because the mountains: The radiations of the Ericaceae. New Phytol. 207, 355–367 (2015).

    PubMed 
    Article 

    Google Scholar
     

  • Meharg, A. A. & Cairney, J. W. G. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. in Advances in Ecological Analysis vol. 30 69–112 (Elsevier, 1999).

  • Wang, B. & Qiu, Y.-L. Phylogenetic distribution and evolution of mycorrhizas in land crops. Mycorrhiza 16, 299–363 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bradley, R., Burt, A. J. & Learn, D. J. Mycorrhizal an infection and resistance to heavy steel toxicity in Calluna vulgaris. Nature 292, 335–337 (1981).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Hazard, C., Gosling, P., Mitchell, D. T., Doohan, F. M. & Bending, G. D. Variety of fungi related to hair roots of ericaceous crops is affected by land use. FEMS Microbiol. Ecol. 87, 586–600 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamim, A. et al. Variety of fungal assemblages in roots of Ericaceae in two Mediterranean contrasting ecosystems. C. R. Biol. 340, 226–237 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Koizumi, T. & Nara, Ok. Communities of putative ericoid mycorrhizal fungi remoted from alpine dwarf shrubs in Japan: Results of host identification and microhabitat. Microbes Environ. 32, 147–153 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Y. et al. Variety of root-associated fungi of Vaccinium mandarinorum alongside a human disturbance gradient in subtropical forests, China. J. Plant Ecol. 10, 56–66 (2017).

    Article 

    Google Scholar
     

  • Yang, H. et al. Variety and traits of colonization of root-associated fungi of Vaccinium uliginosum. Sci. Rep. 8, 15283 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Newsham, Ok. Ok. A meta-analysis of plant responses to darkish septate root endophytes. New Phytol. 190, 783–793 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lukešová, T., Kohout, P., Větrovský, T. & Vohník, M. The potential of darkish septate endophytes to kind root symbioses with ectomycorrhizal and ericoid mycorrhizal center European forest crops. PLoS ONE 10, e0124752 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J. & Ballington, J. R. Resveratrol, pterostilbene, and piceatannol in Vaccinium Berries. J. Agric. Meals Chem. 52, 4713–4719 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brody, A. Ok. et al. Genotype-specific results of ericoid mycorrhizae on floral traits and copy in Vaccinium corymbosum. Am. J. Bot. 106, 1412–1422 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rayner, M. C. Obligate symbiosis in Calluna Vulgaris. Ann. Bot. os-29, 97–98 (1915).

    Article 

    Google Scholar
     

  • Hou, L. W. et al. The phoma-like dilemma. Stud. Mycol. 96, 309–396 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fehrer, J., Réblová, M., Bambasová, V. & Vohník, M. The basis-symbiotic Rhizoscyphus ericae combination and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental proof. Stud. Mycol. 92, 195–225 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pearson, V. & Learn, D. J. The biology of mycorrhiza within the ericaceae. II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol. 72, 1325–1331 (1973).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H.Z. Phylogenetic relationships of some members within the genus Hymenoscyphus (Ascomycetes, Helotiales). Nova Hedwig. 78, 475–484 (2004).

    Article 

    Google Scholar
     

  • Vrålstad, T., Fossheim, T. & Schumacher, T. Piceirhiza bicolorata – the ectomycorrhizal expression of the Hymenoscyphus ericae combination?. New Phytol. 145, 549–563 (2000).

    PubMed 
    Article 

    Google Scholar
     

  • Vohník, M., Figura, T. & Réblová, M. Hyaloscypha gabretae and Hyaloscypha gryndleri spp. nov. (Hyaloscyphaceae, Helotiales), two new mycobionts colonizing conifer, ericaceous and orchid roots. Mycorrhiza 32, 105–122 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Villarreal-Ruiz, L., Anderson, I. C. & Alexander, I. J. Interplay between an isolate from the Hymenoscyphus ericae combination and roots of Pinus and Vaccinium. New Phytol. 164, 183–192 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grelet, G.-A., Johnson, D., Paterson, E., Anderson, I. C. & Alexander, I. J. Reciprocal carbon and nitrogen switch between an ericaceous dwarf shrub and fungi remoted from Piceirhiza bicolorata ectomycorrhizas. New Phytol. 182, 359–366 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vohník, M. et al. The cultivable endophytic neighborhood of Norway spruce ectomycorrhizas from microhabitats missing ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol. 6, 281–292 (2013).

    Article 

    Google Scholar
     

  • Vrålstad, T., Schumacher, T. & Taylor, A. F. S. Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae combination and potential ectomycorrhizal and ericoid hosts. New Phytol. 153, 143–152 (2002).

    Article 

    Google Scholar
     

  • Wang, C. J. Ok. & Wilcox, H. E. New species of ectendomycorrhizal and pseudomycorrhizal fungi: Phialophora Finlandia, Chloridium paucisporum and Phialocephala Fortinii. Mycologia 77, 951–958 (1985).

    Article 

    Google Scholar
     

  • Leopold, D. R. Ericoid fungal variety: Challenges and alternatives for mycorrhizal analysis. Fungal Ecol. 24, 114–123 (2016).

    Article 

    Google Scholar
     

  • Lacourt, I. et al. Nuclear ribosomal sequence evaluation of Oidiodendron: In direction of a redefinition of ecologically related species. New Phytol. 149, 565–576 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Baba, T. & Hirose, D. Sluggish-growing fungi belonging to the unnamed lineage in Chaetothyriomycetidae kind hyphal coils in very important ericaceous rhizodermal cells in vitro. Fungal Biol. 125, 1026–1035 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vohník, M., Pánek, M., Fehrer, J. & Selosse, M.-A. Experimental proof of ericoid mycorrhizal potential inside Serendipitaceae (Sebacinales). Mycorrhiza 26, 831–846 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Vohník, M. et al. Novel root-fungus symbiosis in ericaceae: Sheathed ericoid mycorrhiza shaped by a hitherto undescribed basidiomycete with affinities to trechisporales. PLoS ONE 7, e39524 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Root-associated fungi of Vaccinium carlesii in subtropical forests of China: Intra- and inter-annual variability and impacts of human disturbances. Sci. Rep. 6, 22399 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yurgel, S. N., Douglas, G. M., Dusault, A., Percival, D. & Langille, M. G. I. Dissecting neighborhood construction in wild blueberry root and soil microbiome. Entrance. Microbiol. 9, 1187 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Y., Tang, F., Ni, J., Dong, L. & Solar, L. Variety of root-associated fungi of Rhododendron simsii in subtropical forests: fungal communities with excessive resistance to anthropogenic disturbances. J. For. Res. 30, 2321–2330 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Li, J. et al. Comparative evaluation of rhizosphere microbiomes of Southern Highbush Blueberry (Vaccinium corymbosum L.), Darrow’s blueberry (V. darrowii Camp), and Rabbiteye blueberry (V. virgatum Aiton). Entrance. Microbiol. 11, 370 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morvan, S., Meglouli, H., Lounès-Hadj Sahraoui, A. & Hijri, M. Into the wild blueberry (Vaccinium angustifolium) rhizosphere microbiota. Environ. Microbiol. 22, 3803–3822 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Petrini, O. Endophytic fungi in British Ericaceae: A preliminary examine. Trans. Br. Mycol. Soc. 83, 510–512 (1984).

    Article 

    Google Scholar
     

  • Li, Z.-J., Shen, X.-Y. & Hou, C.-L. Fungal endophytes of South China blueberry (Vaccinium dunalianum var. urophyllum). Lett. Appl. Microbiol. 63, 482–487 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Koudelková, B., Jarošová, R. & Koukol, O. Are endophytic fungi from Rhododendron tomentosum preadapted for its important oil?. Biochem. Syst. Ecol. 75, 21–26 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlegel, M. et al. Globally distributed root endophyte Phialocephala subalpina hyperlinks pathogenic and saprophytic existence. BMC Genomics 17, 1015 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Fang, Ok. et al. Tissue-specific and geographical variation in endophytic fungi of Ageratina adenophora and fungal associations with the setting. Entrance. Microbiol. 10, 2919 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bálint, M. et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS ONE 8, e53987 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Toju, H., Kurokawa, H. & Kenta, T. Elements influencing leaf- and root-associated communities of micro organism and fungi throughout 33 plant orders in a grassland. Entrance. Microbiol. 10, 241 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Vasquez, P. et al. First report of blueberry botrytis blight in Buenos Aires, Entre Ríos, and Córdoba, Argentina. Plant Dis. 91, 639–639 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hamonts, Ok. et al. Discipline examine reveals core plant microbiota and relative significance of their drivers. Environ. Microbiol. 20, 124–140 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grünig, C. R., Queloz, V., Sieber, T. N. & Holdenrieder, O. Darkish septate endophytes (DSE) of the Phialocephala fortinii s.l.—Acephala applanata species complicated in tree roots: classification, inhabitants biology, and ecology. Botany 86, 1355–1369 (2008).

    Article 

    Google Scholar
     

  • Vohník, M. Ericoid mycorrhizal symbiosis: Theoretical background and strategies for its complete investigation. Mycorrhiza 30, 671–695 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Knapp, D. G. et al. Comparative genomics gives insights into the life-style and divulges practical heterogeneity of darkish septate endophytic fungi. Sci. Rep. 8, 6321 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Genomic traits and comparative genomics evaluation of the endophytic fungus Sarocladium brachiariae. BMC Genomics 20, 782 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Alibrandi, P., Schnell, S., Perotto, S. & Cardinale, M. Variety and construction of the endophytic bacterial communities related to three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Entrance. Microbiol. 11, 604964 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hodgson, S. et al. Vertical transmission of fungal endophytes is widespread in forbs. Ecol. Evol. 4, 1199–1208 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Selosse, M.-A., Schneider-Maunoury, L. & Martos, F. Time to re-think fungal ecology? Fungal ecological niches are sometimes prejudged. New Phytol. 217, 968–972 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Zhang, J., Kobert, Ok., Flouri, T. & Stamatakis, A. PEAR: A quick and correct Illumina Paired-Finish reAd mergeR. Bioinforma. Oxf. Engl. 30, 614–620 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Caporaso, J. G. et al. QIIME permits evaluation of high-throughput neighborhood sequencing knowledge. Nat. Strategies 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Edgar, R. C. Search and clustering orders of magnitude quicker than BLAST. Bioinforma. Oxf. Engl. 26, 2460–2461 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A flexible open supply instrument for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Abarenkov, Ok. et al. Full UNITE+INSD dataset for Fungi. (2021) https://doi.org/10.15156/BIO/1281531.

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Primary native alignment search instrument. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference below combined fashions. Bioinforma. Oxf. Engl. 19, 1572–1574 (2003).

    CAS 
    Article 

    Google Scholar
     

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, Ok. MEGA X: Molecular evolutionary genetics evaluation throughout computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, X., Chen, J., Zhang, C. & Pan, D. A New Oidiodendron maius Pressure Remoted from Rhododendron fortunei and its Results on Nitrogen Uptake and Plant Progress. Entrance. Microbiol. 7 (2016).

  • Chong, J., Liu, P., Zhou, G. & Xia, J. Utilizing MicrobiomeAnalyst for complete statistical, practical, and meta-analysis of microbiome knowledge. Nat. Protoc. 15, 799–821 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *