Phylotranscriptomic insights into a Mesoproterozoic–Neoproterozoic origin and early radiation of green seaweeds (Ulvophyceae)

  • Brodie, J., Maggs, C. A., & John, D. M. Inexperienced seaweeds of Britain and Eire. pp. 242 (British Phycological Society, 2007).

  • Leliaert, F. et al. Phylogeny and molecular evolution of the inexperienced algae. Crit. Rev. Plant Sci. 31, 1–46 (2012).


    Google Scholar
     

  • Del Cortona, A. & Leliaert, F. Molecular evolution and morphological diversification of ulvophytes (Chlorophyta). Perspect. Phycol. 5, 27–43 (2018).


    Google Scholar
     

  • Fang, L., Leliaert, F., Zhang, Z., Penny, D. & Zhong, B. Evolution of the Chlorophyta: Insights from chloroplast phylogenomic analyses. J. Syst. Evol. 55, 322–332 (2017).


    Google Scholar
     

  • Prazukin, A. V., Anufriieva, E. V. & Shadrin, N. V. Is biomass of filamentous inexperienced algae Cladophora spp. (Chlorophyta, Ulvophyceae) a limiteless low-cost and helpful useful resource for medication and pharmacology? A overview. Rev. Aquacult. 12, 2493–2510 (2020).


    Google Scholar
     

  • Cocquyt, E., Verbruggen, H., Leliaert, F. & De Clerck, O. Evolution and cytological diversification of the inexperienced seaweeds (Ulvophyceae). Mol. Biol. Evol. 27, 2052–2061 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Atkinson, N. et al. Introducing an algal carbon-concentrating mechanism into greater vegetation: location and incorporation of key elements. Plant Biotechnol. J. 14, 1302–1315 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Mattox, Ok. R. & Stewart, Ok. D. Classification of the inexperienced algae: an idea primarily based on comparative cytology. In: Irvine, D. E. G. & John, D. M., editors. Systematics of the Inexperienced Algae. pp. 29–72 (Tutorial Press, 1984).

  • O’Kelly, C. J. & Floyd, G. L. Correlations amongst patterns of sporangial construction and growth, life histories, and ultrastructural options within the Ulvophyceae. In: Systematics of the Inexperienced Algae (eds Irvine, D. E. G. & John, D. M.) pp. 121–156 (Tutorial Press, 1984).

  • Van den Hoek, C., Stam, W. T. & Olsen, J. L. The emergence of a brand new chlorophytan system, and Dr. Kornmann’s contribution thereto. Helgol. Mar. Res. 42, 339–383 (1988).


    Google Scholar
     

  • Watanabe, S. & Nakayama, T. Ultrastructure and phylogenetic relationships of the unicellular inexperienced algae Ignatius tetrasporus and Pseudocharacium americanum (Chlorophyta). Phycol. Res. 55, 1–16 (2007).

    CAS 

    Google Scholar
     

  • Škaloud, P., Kalina, T., Nemjova, Ok., De Clerck, O. & Leliaert, F. Morphology and phylogenetic place of the freshwater inexperienced microalgae Chlorochytrium (Chlorophyceae) and Scotinosphaera (Scotinosphaerales, ord. nov., Ulvophyceae). J. Phycol. 49, 115–129 (2013).

    PubMed 

    Google Scholar
     

  • Fučíková, Ok. et al. New phylogenetic hypotheses for the core Chlorophyta primarily based on chloroplast sequence knowledge. Entrance. Ecol. Evol. 2, 63 (2014).


    Google Scholar
     

  • Leliaert, F. & López-Bautista, J. M. The chloroplast genomes of Bryopsis plumosa and Tydemania expeditiones (Bryopsidales, Chlorophyta): compact genomes and genes of bacterial origin. BMC Genom. 16, 204 (2015).


    Google Scholar
     

  • Fang, L. et al. Enhancing phylogenetic inference of core Chlorophyta utilizing chloroplast sequences with robust phylogenetic indicators and heterogeneous fashions. Mol. Phylogenet. Evol. 127, 248–255 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Solar, L. et al. Chloroplast phylogenomic inference of inexperienced algae relationships. Sci. Rep. 6, 20528 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Giant phylogenomic datasets reveal deep relationships and trait evolution in chlorophyte inexperienced algae. Genome Biol. Evol. 13, evab101 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Cortona, A. et al. Neoproterozoic origin and a number of transitions to macroscopic progress in inexperienced seaweeds. Proc. Natl Acad. Sci. U.S.A. 117, 2551–2559 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of inexperienced vegetation. Nature 574, 679–685 (2019).


    Google Scholar
     

  • Gulbrandsen, Ø. S., Andresen, I. J., Krabberød, A. Ok., Bråte, J. & Shalchian-Tabrizi, Ok. Phylogenomic evaluation restructures the Ulvophyceae. J. Phycol. 57, 1223–1233 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Melton, J. R., Leliaert, F., Tronholm, A. & Lopez-Bautista, J. M. The whole chloroplast and mitochondrial genomes of the inexperienced macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta). PLoS ONE 10, e121020 (2015).


    Google Scholar
     

  • Javaux, E. J. & Knoll, A. H. Micropaleontology of the decrease Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199–229 (2017).


    Google Scholar
     

  • Moczydłowska, M., Touchdown, E. D., Zang, W. & Palacios, T. Proterozoic phytoplankton and timing of chlorophyte algae origins. Palaeontology 54, 721–733 (2011).


    Google Scholar
     

  • Butterfield, N. J., Knoll, A. H. & Swett, Ok. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Lethaia 27, 76–76 (1994).


    Google Scholar
     

  • LoDuca, S. T. New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus. J. Paleontol. 93, 197–214 (2018).


    Google Scholar
     

  • Verbruggen, H. et al. A multi-locus time-calibrated phylogeny of the siphonous inexperienced algae. Mol. Phylogenet. Evol. 50, 642–653 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Butterfield, N. J. Modes of pre-Ediacaran multicellularity. Precambrian Res. 173, 201–211 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Tang, Q., Pang, Ok., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, L. E. Digging deeper: why we want extra Proterozoic algal fossils and how you can get them. J. Phycol. 55, 1–6 (2019).

    PubMed 

    Google Scholar
     

  • Xiao, S. & Tang, Q. After the boring billion and earlier than the freezing hundreds of thousands: evolutionary patterns and improvements within the Tonian Interval. Emerg. Prime. Life Sci. 2, 161–171 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Rannala, B., Edwards, S. V., Leaché, A. & Yang, Z. The multi-species coalescent mannequin and species tree inference. Phylogenet. Genom. Period e-book part 3.3, pp. 3.3:1–21 (2020).

  • Liu, L., Wu, S. & Yu, L. Coalescent strategies for estimating species timber from phylogenomic knowledge. J. Syst. Evol. 53, 380–390 (2015).


    Google Scholar
     

  • Turmel, M., Otis, C. & Lemieux, C. Divergent copies of the big inverted repeat within the chloroplast genomes of ulvophycean inexperienced algae. Sci. Rep. 7, 994 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leliaert, F. et al. Systematics of the marine microfilamentous inexperienced algae Uronema curvatum and Urospora microscopica (Chlorophyta). Eur. J. Phycol. 44, 487–496 (2009).

    CAS 

    Google Scholar
     

  • Del Cortona, A. et al. The plastid genome in Cladophorales inexperienced algae is encoded by hairpin chromosomes. Curr. Biol. 27, 3771–3782 (2017).

    PubMed 

    Google Scholar
     

  • Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Evaluation of phylogenomic datasets reveals battle, concordance, and gene duplications with examples from animals and vegetation. BMC Evol. Biol. 15, 150 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Briones, D. F. et al. Disentangling sources of gene tree discordance in phylogenomic knowledge units: testing historical hybridizations in Amaranthaceae s.l. Syst. Biol. 70, 219–235 (2021).

    PubMed 

    Google Scholar
     

  • Mirarab, S., Bayzid, M. S. & Warnow, T. Evaluating abstract strategies for multilocus species tree estimation within the presence of incomplete lineage sorting. Syst. Biol. 65, 366–380 (2016).

    PubMed 

    Google Scholar
     

  • Pease, J. B., Brown, J. W., Walker, J. F., Hinchliff, C. E. & Smith, S. A. Quartet sampling distinguishes lack of assist from conflicting assist within the inexperienced plant tree of life. Am. J. Bot. 105, 385–403 (2018).

    PubMed 

    Google Scholar
     

  • Jiang, X., Edwards, S. V. & Liu, L. The multispecies coalescent mannequin outperforms concatenation throughout numerous phylogenomic knowledge units. Syst. Biol. 69, 795–812 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blom, M., Bragg, J. G., Potter, S. & Moritz, C. Accounting for uncertainty in gene tree estimation: summary-coalescent species tree inference in a difficult radiation of Australian lizards. Syst. Biol. 66, 352–366 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L., Xi, Z. & Davis, C. C. Coalescent strategies are sturdy to the simultaneous results of lengthy branches and incomplete lineage sorting. Mol. Biol. Evol. 32, 791–805 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Philippe, H. et al. Pitfalls in supermatrix phylogenomics. Eur. J. Taxon. 283, 1–25 (2017).


    Google Scholar
     

  • Crotty, S. M. et al. GHOST: recovering historic sign from heterotachously advanced sequence alignments. Syst. Biol. 69, 249–264 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. C., Minh, B. Q., Susko, E. & Roger, A. J. Modeling web site heterogeneity with posterior imply web site frequency profiles accelerates correct phylogenomic estimation. Syst. Biol. 67, 216–235 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Brown, J. M. & Thomson, R. C. Evaluating mannequin efficiency in evolutionary biology. Annu. Rev. Ecol. Evol. Syst. 49, 95–114 (2018).


    Google Scholar
     

  • Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).

    PubMed 

    Google Scholar
     

  • Puttick, M. N. et al. The interrelationships of land vegetation and the character of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, S. V. Is a brand new and common idea of molecular systematics rising? Evolution 63, 1–19 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, B., Liu, L., Yan, Z. & Penny, D. Origin of land vegetation utilizing the multispecies coalescent mannequin. Tendencies Plant Sci. 18, 492–495 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Phylogenomic insights into deep phylogeny of angiosperms primarily based on broad nuclear gene sampling. Plant Commun. 1, 100027 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Prickly waterlily and inflexible hornwort genomes make clear early angiosperm evolution. Nat. Crops 6, 215–222 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting throughout the traditional adaptive radiation of Neoavian birds. PLoS Biol. 13, e1002224 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenen, E. et al. Giant-scale genomic sequence knowledge resolve the deepest divergences within the legume phylogeny and assist a near-simultaneous evolutionary origin of all six subfamilies. N. Phytol. 225, 1355–1369 (2020).

    CAS 

    Google Scholar
     

  • Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Tendencies Ecol. Evol. 24, 332–340 (2009).

    PubMed 

    Google Scholar
     

  • Tune, S., Liu, L., Edwards, S. V. & Wu, S. Resolving battle in eutherian mammal phylogeny utilizing phylogenomics and the multispecies coalescent mannequin. Proc. Natl Acad. Sci. U.S.A. 109, 14942–14947 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cloutier, A. et al. Complete-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) within the presence of an empirical anomaly zone. Syst. Biol. 68, 937–955 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sauquet, H. A sensible information to molecular relationship. C. R. Palevol. 12, 355–367 (2013).


    Google Scholar
     

  • Ho, S. Y. W. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence instances. Syst. Biol. 58, 367–380 (2009).

    PubMed 

    Google Scholar
     

  • Parham, J. F. et al. Finest practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).

    PubMed 

    Google Scholar
     

  • Bykova, N. et al. Seaweeds by way of time: morphological and ecological evaluation of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • LoDuca, S. T., Bykova, N., Wu, M., Xiao, S. & Zhao, Y. Seaweed morphology and ecology in the course of the nice animal diversification occasions of the early Paleozoic: a story of two floras. Geobiology 15, 588–616 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sforna, M. C. et al. Intracellular certain chlorophyll residues determine 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 146 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, C., Knoll, A. H., Chan, C. X. & Verbruggen, H. Plastid phylogenomics with broad taxon sampling additional elucidates the distinct evolutionary origins and timing of secondary inexperienced plastids. Sci. Rep. 8, 1523 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of crimson algal-derived plastids. Nat. Commun. 12, 1879 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie, Y. et al. Accounting for uncertainty within the evolutionary timescale of inexperienced vegetation by way of clock-partitioning and fossil calibration methods. Syst. Biol. 69, 1–16 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. U.S.A. 114, E7737–E7745 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teyssèdre, B. Are the inexperienced algae (phylum Viridiplantae) two billion years previous? Carnets Géol. 3, CG2006 _A03 (2006).

  • Maloney, Ok. et al. New multicellular marine macroalgae from the early Tonian of northwestern Canada. Geology 49, 743–747 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Tang, Q. et al. The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a doable macroalga. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110485 (2021).


    Google Scholar
     

  • Ozaki, Ok., Reinhard, C. T. & Tajika, E. A sluggish mid-Proterozoic biosphere and its impact on Earth’s redox steadiness. Geobiology 17, 3–11 (2019).

    PubMed 

    Google Scholar
     

  • Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M. & Shields-Zhou, G. A. A worldwide transition to ferruginous situations within the early Neoproterozoic oceans. Nat. Geosci. 8, 466–470 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • Brocks, J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and ambiance. Nature 506, 307–315 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Oxygen, local weather and the chemical evolution of a 1400 million yr previous tropical marine setting. Am. J. Sci. 317, 861–900 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Ok. et al. Oxygenation of the Mesoproterozoic ocean and the evolution of advanced eukaryotes. Nat. Geosci. 11, 345–350 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Sperling, E. A. et al. Redox heterogeneity of subsurface waters within the Mesoproterozoic ocean. Geobiology 12, 373–386 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Enough oxygen for animal respiration 1,400 million years in the past. Proc. Natl Acad. Sci. U.S.A. 113, 1731–1736 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planavsky, N. J. et al. Low Mid-Proterozoic atmospheric oxygen ranges and the delayed rise of animals. Science 346, 635–638 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabherr, M. G. et al. Full-length transcriptome meeting from RNA-Seq knowledge with no reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davidson, N. M. & Oshlack, A. Corset: enabling differential gene expression evaluation for de novo assembled transcriptomes. Genome Biol. 15, 410 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog teams for eukaryotic genomes. Genome Res 13, 2178–2189 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petersen, M. et al. Orthograph: a flexible instrument for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinform. 18, 111 (2017).


    Google Scholar
     

  • Katoh, Ok. & Standley, D. M. MAFFT a number of sequence alignment software program model 7: enhancements in efficiency and usefulness. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castresana, J. Collection of conserved blocks from a number of alignments for his or her use in phylogenetic evaluation. Mol. Biol. Evol. 17, 540–552 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a instrument for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a quick and efficient stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing within the UNIX shell. Bioinformatics 26, 1669–1670 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene timber. BMC Bioinform. 19, 153 (2018).


    Google Scholar
     

  • Guindon, S. et al. New algorithms and strategies to estimate maximum-likelihood phylogenies: assessing the efficiency of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guiry, M. D. & Guiry, G. M. AlgaeBase. World-wide digital publication, Nationwide College of Eire, Galway. https://www.algaebase.org (Accessed 22 March 2021).

  • Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, evaluation, and visualization of phylogenomic knowledge. Mol. Biol. Evol. 33, 1635–1638 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Ok. et al. Incomplete lineage sorting quite than hybridization explains the inconsistent phylogeny of the wisent. Commun. Biol. 1, 169 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. & Yu, L. Phybase: an R bundle for species tree evaluation. Bioinformatics 26, 962–963 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic evaluation by most chance. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: a sensible method to divergence-time estimation within the genomic period. PLoS ONE 13, e197433 (2018).


    Google Scholar
     

  • Reis, M. & Yang, Z. Approximate chance calculation on a phylogeny for Bayesian estimation of divergence instances. Mol. Biol. Evol. 28, 2161–2172 (2011).

    PubMed 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics utilizing Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, Q., Barba-Montoya, J. & Kumar, S. Information-driven speciation tree prior for higher species divergence instances in calibration-poor molecular phylogenies. Bioinformatics 37, i102–i110 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puttick, M. N. MCMCtreeR: features to arrange MCMCtree analyses and visualize posterior ages on timber. Bioinformatics 35, 5321–5322 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Proof for eukaryotic diversification within the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Colbath, G. Ok. & Grenfell, H. R. Evaluation of organic affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (together with “acritarchs”). Rev. Palaeobot. Palynol. 86, 287–314 (1995).


    Google Scholar
     

  • Nye, E., Feist-Burkhardt, S., Horne, D. J., Ross, A. J. & Whittaker, J. E. The palaeoenvironment related to a partial Iguanodon skeleton from the Higher Weald Clay (Barremian, Early Cretaceous) at Smokejacks Brickworks (Ockley, Surrey, UK), primarily based on palynomorphs and ostracods. Cretac. Res. 29, 417–444 (2008).


    Google Scholar
     

  • Škaloud, P., Rindi, F., Boedeker, C. & Leliaert, F. Freshwater Flora of Central Europe, Vol 13: Chlorophyta: Ulvophyceae. pp. 288 (Springer Spektrum, 2018).

  • Darienko, T., Rad-Menéndez, C., Campbell, C. N. & Pröschold, T. Molecular phylogeny of unicellular marine coccoid inexperienced algae revealed new insights into the systematics of the Ulvophyceae (Chlorophyta). Microorganisms 9, 1586 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *