Population genetics of clonally transmissible cancers

  • Ling, S. et al. Extraordinarily excessive genetic variety in a single tumor factors to prevalence of non-Darwinian cell evolution. Proc. Natl Acad. Sci. USA 112, E6496–E6505 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, M. J., Werner, B., Graham, T. A. & Sottoriva, A. Practical versus non-functional intratumor heterogeneity in most cancers. Mol. Cell Oncol. 3, e1162897 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kato, M., Vasco, D. A., Sugino, R., Narushima, D. & Krasnitz, A. Sweepstake evolution revealed by population-genetic evaluation of copy-number alterations in single genomes of breast most cancers. R. Soc. Open Sci. 4, 171060 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tilk, S., Curtis, C., Petrov, D. A. & McFarland, C. D. Most cancers carry a considerable deleterious load attributable to Hill–Robertson interference. Preprint at bioRxiv https://doi.org/10.1101/764340 (2021).

  • Watson, C. J. et al. The evolutionary dynamics and health panorama of clonal hematopoiesis. Science 367, 1449–1454 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Persi, E., Wolf, Y. I., Leiserson, M. D. M., Koonin, E. V. & Ruppin, E. Criticality in tumor evolution and scientific end result. Proc. Natl Acad. Sci. USA 115, E11101–E11110 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tao, Y. et al. Fast progress of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic evaluation of whole-genome information. Proc. Natl Acad. Sci. USA 108, 12042–12047 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nunney, L. The inhabitants genetics of multistage carcinogenesis. Proc. Biol. Sci. 270, 1183–1191 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Naugler, C. T. Inhabitants genetics of most cancers cell clones: potential implications of most cancers stem cells. Theor. Biol. Med. Mannequin. 7, 42 (2010).

  • Sottoriva, A. & Tavaré, S. in Frontiers in Most cancers Analysis: Evolutionary Foundations, Revolutionary Instructions (eds Maley, C. C. & Greaves, M.) 31–42 (Springer, 2016).

  • Hu, Z., Solar, R. & Curtis, C. A inhabitants genetics perspective on the determinants of intra-tumor heterogeneity. Biochim. Biophys. Acta Rev. Most cancers 1867, 109–126 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ujvari, B., Gatenby, R. A. & Thomas, F. in Ecology and Evolution of Most cancers (eds Ujvari, B. et al.) 167–179 (Educational Press, 2017).

  • Dujon, A. M. et al. Transmissible cancers in an evolutionary perspective. iScience 23, 101269 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ujvari, B., Papenfuss, A. T. & Belov, Okay. Transmissible cancers in an evolutionary context. Bioessays 38, S14–S23 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Murchison, E. P. Clonally transmissible cancers in canine and Tasmanian devils. Oncogene 27, S19–S30 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metzger, M. J. & Goff, S. P. A sixth modality of infectious illness: contagious most cancers from devils to clams and past. PLoS Pathog. 12, e1005904 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gould, S. J. Fantastic Life: the Burgess Shale and the Nature of Historical past (WW Norton & Firm, 1990).

  • Stammnitz, M. R. et al. The origins and vulnerabilities of two transmissible cancers in Tasmanian devils. Most cancers Cell 33, 607–619 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baez-Ortega, A. et al. Somatic evolution and international growth of an historic transmissible most cancers lineage. Science 365, eaau9923 (2019).

  • Kwon, Y. M. et al. Evolution and lineage dynamics of a transmissible most cancers in Tasmanian devils. PLoS Biol. 18, e3000926 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Patton, A. H. et al. A transmissible most cancers shifts from emergence to endemism in Tasmanian devils. Science 370, eabb9772 (2020).

  • Strakova, A. et al. Recurrent horizontal switch identifies mitochondrial optimistic choice in a transmissible most cancers. Nat. Commun. 11, 3059 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Metzger, M. J. et al. Widespread transmission of unbiased most cancers lineages inside a number of bivalve species. Nature 534, 705–709 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hammel, M. et al. Prevalence and polymorphism of a mussel transmissible most cancers in Europe. Mol. Ecol. 31, 736–751 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Lengthy-term experimental evolution in Escherichia coli. I. Adaptation and divergence throughout 2,000 generations. Am. Nat. 138, 1315–1341 (1991).

    Article 

    Google Scholar
     

  • Tenaillon, O. et al. Tempo and mode of genome evolution in a 50,000-generation experiment. Nature 536, 165–170 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wiser, M. J., Ribeck, N. & Lenski, R. E. Lengthy-term dynamics of adaptation in asexual populations. Science 342, 1364–1367 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sprouffske, Okay., Merlo, L. M. F., Gerrish, P. J., Maley, C. C. & Sniegowski, P. D. Most cancers in mild of experimental evolution. Curr. Biol. 22, R762–R771 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Extra of mutational jackpot occasions in increasing populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).

  • Marusyk, A. in Ecology and Evolution of Most cancers (eds Ujvari, B. et al.) 223–227 (Educational Press, 2017).

  • Waldetoft, Okay. W., McDonald, J. F. & Brown, S. P. in Ecology and Evolution of Most cancers (eds Ujvari, B. et al.) 243–246 (Educational Press, 2017).

  • Cairns, J. Mutation choice and the pure historical past of most cancers. Nature 255, 197–200 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Greaves, M. Evolutionary determinants of most cancers. Most cancers Discov. 5, 806–820 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shen, H. & Laird, P. W. Interaction between the most cancers genome and epigenome. Cell 153, 38–55 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bell, C. C. & Gilan, O. Ideas and mechanisms of non-genetic resistance in most cancers. Br. J. Most cancers 122, 465–472 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Martincorena, I. et al. Tumor evolution. Excessive burden and pervasive optimistic collection of somatic mutations in regular human pores and skin. Science 348, 880–886 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Huxley, J. Most cancers biology: comparative and genetic. Biol. Rev. Camb. Philos. Soc. 31, 474–513 (1956).

    Article 

    Google Scholar
     

  • Vincent, M. D. The animal inside: carcinogenesis and the clonal evolution of most cancers cells are speciation occasions sensu stricto. Evolution 64, 1173–1183 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Duesberg, P., Mandrioli, D., McCormack, A. & Nicholson, J. M. Is carcinogenesis a type of speciation? Cell Cycle 10, 2100–2114 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • de Meeûs, T., Prugnolle, F. & Agnew, P. Asexual replica: genetics and evolutionary elements. Cell. Mol. Life Sci. 64, 1355–1372 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Barraclough, T. G., Birky, C. W. Jr & Burt, A. Diversification in sexual and asexual organisms. Evolution 57, 2166–2172 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Maynard Smith, J. Considering life with out intercourse. Nature 324, 300–301 (1986).

    Article 

    Google Scholar
     

  • Birky, C. W. Jr Heterozygosity, heteromorphy, and phylogenetic timber in asexual eukaryotes. Genetics 144, 427–437 (1996).

    PubMed 
    Article 

    Google Scholar
     

  • Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Felsenstein, J. The evolutionary benefit of recombination. Genetics 78, 737–756 (1974).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Betancourt, A. J., Welch, J. J. & Charlesworth, B. Decreased effectiveness of choice attributable to a scarcity of recombination. Curr. Biol. 19, 655–660 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mark Welch, D. B. & Meselson, M. Proof for the evolution of bdelloid rotifers with out sexual replica or genetic change. Science 288, 1211–1215 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fontaneto, D. et al. Independently evolving species in asexual bdelloid rotifers. PLoS Biol. 5, e87 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ujvari, B., Gatenby, R. A. & Thomas, F. Transmissible cancers, are they extra frequent than thought? Evol. Appl. 9, 633–634 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ní Leathlobhair, M., Gulland, F. M. D. & Murchison, E. P. No proof for clonal transmission of urogenital carcinoma in California sea lions (Zalophus californianus). Wellcome Open Res. 2, 46 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ní Leathlobhair, M. et al. Genotype information not per clonal transmission of sea turtle fibropapillomatosis or goldfish schwannoma. Wellcome Open Res. 6, 219 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Murgia, C., Pritchard, J. Okay., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible most cancers. Cell 126, 477–487 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M. & Burt, A. Origins and evolution of a transmissible most cancers. Evolution 63, 2340–2349 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pearse, A.-M. & Swift, Okay. Allograft principle: transmission of satan facial-tumour illness. Nature 439, 549 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murchison, E. P. et al. Genome sequencing and evaluation of the Tasmanian satan and its transmissible most cancers. Cell 148, 780–791 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pye, R. J. et al. A second transmissible most cancers in Tasmanian devils. Proc. Natl Acad. Sci. USA 113, 374–379 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal most cancers cells causes leukemia in soft-shell clams. Cell 161, 255–263 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yonemitsu, M. A. et al. A single clonal lineage of transmissible most cancers recognized in two marine mussel species in South America and Europe. eLife 8, e47788 (2019).

  • Garcia-Souto, D. et al. Mitochondrial genome sequencing of marine leukaemias reveals most cancers contagion between clam species within the Seas of Southern Europe. eLife 11, e66946 (2022).

  • Fouad, Y. A. & Aanei, C. Revisiting the hallmarks of most cancers. Am. J. Most cancers Res. 7, 1016–1036 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Chromosome catastrophes contain replication mechanisms producing complicated genomic rearrangements. Cell 146, 889–903 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Baca, S. C. et al. Punctuated evolution of prostate most cancers genomes. Cell 153, 666–677 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Crow, J. F. Mutation, imply health, and genetic load. Oxf. Surv. Evol. Biol. 9, 3–42 (1993).


    Google Scholar
     

  • Eyre-Walker, A. & Keightley, P. D. The distribution of health results of latest mutations. Nat. Rev. Genet. 8, 610–618 (2007).

  • Aktipis, C. A., Boddy, A. M., Gatenby, R. A., Brown, J. S. & Maley, C. C. Life historical past trade-offs in most cancers evolution. Nat. Rev. Most cancers 13, 883–892 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jacqueline, C. et al. Most cancers: a illness on the crossroads of trade-offs. Evol. Appl. 10, 215–225 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Martincorena, I. et al. Common patterns of choice in most cancers and somatic tissues. Cell 171, 1029–1041 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Noorbakhsh, J. & Chuang, J. H. Uncertainties in tumor allele frequencies restrict energy to deduce evolutionary pressures. Nat. Genet. 49, 1288–1289 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Reply: Uncertainties in tumor allele frequencies restrict energy to deduce evolutionary pressures. Nat. Genet. 49, 1289–1291 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heide, T. et al. Reply to ‘Impartial tumor evolution?’. Nat. Genet. 50, 1633–1637 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tarabichi, M. et al. Impartial tumor evolution? Nat. Genet. 50, 1630–1633 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McDonald, T. O., Chakrabarti, S. & Michor, F. At the moment out there bulk sequencing information don’t essentially assist a mannequin of impartial tumor evolution. Nat. Genet. 50, 1620–1623 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strakova, A. et al. Mitochondrial genetic variety, choice and recombination in a canine transmissible most cancers. eLife 5, e14552 (2016).

  • McFarland, C. D., Korolev, Okay. S., Kryukov, G. V., Sunyaev, S. R. & Mirny, L. A. Influence of deleterious passenger mutations on most cancers development. Proc. Natl Acad. Sci. USA 110, 2910–2915 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Morley, A. A. The somatic mutation principle of ageing. Mutat. Res. 338, 19–23 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Peck, J. R. A ruby within the garbage: helpful mutations, deleterious mutations and the evolution of intercourse. Genetics 137, 597–606 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lynch, M. et al. Genetic drift, choice and the evolution of the mutation price. Nat. Rev. Genet. 17, 704–714 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haldane, J. B. S. A mathematical principle of pure and synthetic choice, Half V: choice and mutation. Math. Proc. Camb. Philos. Soc. 23, 838–844 (1927).

    Article 

    Google Scholar
     

  • Gerrish, P. J. & Lenski, R. E. The destiny of competing helpful mutations in an asexual inhabitants. Genetica 102-103, 127–144 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barrick, J. E. & Lenski, R. E. Genome dynamics throughout experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Papkou, A., Gokhale, C. S., Traulsen, A. & Schulenburg, H. Host–parasite coevolution: why altering inhabitants measurement issues. Zoology 119, 330–338 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Jain, Okay. Lack of least-loaded class in asexual populations attributable to drift and epistasis. Genetics 179, 2125–2134 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haigh, J. The buildup of deleterious genes in a inhabitants. Theor. Popul. Biol. 14, 251–267 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lynch, M. & Gabriel, W. Mutation load and the survival of small populations. Evolution 44, 1725–1737 (1990).

    PubMed 
    Article 

    Google Scholar
     

  • Gabriel, W., Lynch, M. & Burger, R. Muller’s ratchet and mutational meltdowns. Evolution 47, 1744–1757 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Howe, D. Okay. & Denver, D. R. Muller’s ratchet and compensatory mutation in Caenorhabditis briggsae mitochondrial genome evolution. BMC Evol. Biol. 8, 62 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rand, D. M. Mitigating mutational meltdown in mammalian mitochondria. PLoS Biol. 6, e35 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Polyak, Okay. et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20, 291–293 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chatterjee, A., Mambo, E. & Sidransky, D. Mitochondrial DNA mutations in human most cancers. Oncogene 25, 4663–4674 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Murchison, E. P. et al. Transmissible [corrected] canine most cancers genome reveals the origin and historical past of an historic cell lineage. Science 343, 437–440 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rebbeck, C. A., Leroi, A. M. & Burt, A. Mitochondrial seize by a transmissible most cancers. Science 331, 303 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bautista-Gómez, L. & Martínez-Castañeda, S. Identification of mitochondrial DNA switch in canine transmissible venereal tumours obtained from canine in Mexico. Mitochondrial DNA A DNA Mapp. Seq. Anal. 28, 645–649 (2017).

    PubMed 

    Google Scholar
     

  • Aanen, D. Okay. & Maas, M. F. P. M. Recruitment of wholesome mitochondria fuels transmissible cancers. Tendencies Genet. 28, 1–6 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Skazina, M. et al. First description of a widespread Mytilus trossulus-derived bivalve transmissible most cancers lineage in M. trossulus itself. Sci. Rep. 11, 5809 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Khakhlova, O. & Bock, R. Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J. 46, 85–94 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mandegar, M. A. & Otto, S. P. Mitotic recombination counteracts the advantages of genetic segregation. Proc. Biol. Sci. 274, 1301–1307 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weir, W. et al. Inhabitants genomics reveals the origin and asexual evolution of human infective trypanosomes. eLife 5, e11473 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Archetti, M. Lack of complementation and the logic of two-step meiosis. J. Evol. Biol. 17, 1098–1105 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Archetti, M. Recombination and lack of complementation: a greater than two‐fold value for parthenogenesis. J. Evol. Biol. 17, 1084–1097 (2004).

  • Archetti, M. Complementation, genetic battle, and the evolution of intercourse and recombination. J. Hered. 101, S21–S33 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Omilian, A. R., Cristescu, M. E. A., Dudycha, J. L. & Lynch, M. Ameiotic recombination in asexual lineages of Daphnia. Proc. Natl Acad. Sci. USA 103, 18638–18643 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tucker, A. E., Ackerman, M. S. & Eads, B. D. Inhabitants-genomic insights into the evolutionary origin and destiny of obligately asexual Daphnia pulex. Proc. Natl Acad. Sci. USA 110, 15740–15745 (2013).

  • Kondrashov, A. S. Muller’s ratchet underneath epistatic choice. Genetics 136, 1469–1473 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the pace of Muller’s ratchet. Genetics 154, 1379–1387 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takeuchi, N., Kaneko, Okay. & Koonin, E. V. Horizontal gene switch can rescue prokaryotes from Muller’s ratchet: advantage of DNA from useless cells and inhabitants subdivision. G3 4, 325–339 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Warren, W. C. et al. Clonal polymorphism and excessive heterozygosity within the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2, 669–679 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gladyshev, E. A., Meselson, M. & Arkhipova, I. R. Large horizontal gene switch in bdelloid rotifers. Science 320, 1210–1213 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Debortoli, N. et al. Genetic change amongst bdelloid rotifers is extra possible attributable to horizontal gene switch than to meiotic intercourse. Curr. Biol. 26, 723–732 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maciver, S. Okay. Asexual amoebae escape Muller’s ratchet by polyploidy. Tendencies Parasitol. 32, 855–862 (2016).

    PubMed 
    Article 

    Google Scholar
     

  • Balloux, F., Lehmann, L. & de Meeûs, T. The inhabitants genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brandt, A. et al. Haplotype divergence helps long-term asexuality within the oribatid mite Oppiella nova. Proc. Natl Acad. Sci. USA 118, e2101485118 (2021).

  • Mark Welch, D. B., Welch, J. L. M. & Meselson, M. Proof for degenerate tetraploidy in bdelloid rotifers. Proc. Natl Acad. Sci. USA 105, 5145–5149 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deakin, J. E. et al. Genomic restructuring within the Tasmanian satan facial tumour: chromosome portray and gene mapping present clues to evolution of a transmissible tumour. PLoS Genet. 8, e1002483 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adey, A. et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa most cancers cell line. Nature 500, 207–211 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Consuegra, J. et al. Insertion-sequence-mediated mutations each promote and constrain evolvability throughout a long-term experiment with micro organism. Nat. Commun. 12, 980 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arkhipova, I. & Meselson, M. Transposable components in sexual and historic asexual taxa. Proc. Natl Acad. Sci. USA 97, 14473–14477 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arkhipova, I. & Meselson, M. Deleterious transposable components and the extinction of asexuals. Bioessays 27, 76–85 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hickey, D. A. Egocentric DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bast, J., Jaron, Okay. S., Schuseil, D., Roze, D. & Schwander, T. Asexual replica reduces transposable ingredient load in experimental yeast populations. eLife 8, e48548 (2019).

  • Shukla, R. et al. Endogenous retrotransposition prompts oncogenic pathways in hepatocellular carcinoma. Cell 153, 101–111 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Katzir, N. et al. ‘Retroposon’ insertion into the mobile oncogene c-myc in canine transmissible venereal tumor. Proc. Natl Acad. Sci. USA 82, 1054–1058 (1985).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Metzger, M. J., Paynter, A. N., Siddall, M. E. & Goff, S. P. Horizontal switch of retrotransposons between bivalves and different aquatic species of a number of phyla. Proc. Natl Acad. Sci. USA 115, E4227–E4235 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Arriagada, G. et al. Activation of transcription and retrotransposition of a novel retroelement, Steamer, in neoplastic hemocytes of the mollusk Mya arenaria. Proc. Natl Acad. Sci. USA 111, 14175–14180 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wielgoss, S. et al. Mutation price dynamics in a bacterial inhabitants replicate rigidity between adaptation and genetic load. Proc. Natl Acad. Sci. USA 110, 222–227 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Taddei, F. et al. Function of mutator alleles in adaptive evolution. Nature 387, 700–702 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gerrish, P. J., Colato, A., Perelson, A. S. & Sniegowski, P. D. Full genetic linkage can subvert pure choice. Proc. Natl Acad. Sci. USA 104, 6266–6271 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • de Visser, J. A. G. M., Zeyl, C. W., Gerrish, P. J., Blanchard, J. L. & Lenski, R. E. Diminishing returns from mutation provide price in asexual populations. Science 283, 404–406 (1999).

    PubMed 
    Article 

    Google Scholar
     

  • Oliver, A., Cantón, R., Campo, P., Baquero, F. & Blázquez, J. Excessive frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung an infection. Science 288, 1251–1254 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loeb, L. A. Mutator phenotype could also be required for multistage carcinogenesis. Most cancers Res. 51, 3075–3079 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Loeb, L. A. Human cancers categorical mutator phenotypes: origin, penalties and concentrating on. Nat. Rev. Most cancers 11, 450–457 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nowak, M. A., Michor, F., Komarova, N. L. & Iwasa, Y. Evolutionary dynamics of tumor suppressor gene inactivation. Proc. Natl Acad. Sci. USA 101, 10635–10638 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harris, Okay. & Pritchard, J. Okay. Fast evolution of the human mutation spectrum. eLife 6, e24284 (2017).

  • Smith, J. M. & Haigh, J. The hitch-hiking impact of a beneficial gene. Genet. Res. 23, 23–35 (1974).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cutter, A. D. & Payseur, B. A. Genomic signatures of choice at linked websites: unifying the disparity amongst species. Nat. Rev. Genet. 14, 262–274 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Charlesworth, B. The results of deleterious mutations on evolution at linked websites. Genetics 190, 5–22 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Betancourt, A. J. & Presgraves, D. C. Linkage limits the ability of pure choice in Drosophila. Proc. Natl Acad. Sci. USA 99, 13616–13620 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fogle, C. A., Nagle, J. L. & Desai, M. M. Clonal interference, a number of mutations and adaptation in massive asexual populations. Genetics 180, 2163–2173 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hill, W. G. & Robertson, A. The impact of linkage on limits to synthetic choice. Genet. Res. 8, 269–294 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Covert, A. W., Lenski, R. E., Wilke, C. O. & Ofria, C. Experiments on the function of deleterious mutations as stepping stones in adaptive evolution. Proc. Natl Acad. Sci. USA 110, E3171–E3178 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johnson, M. S. et al. Phenotypic and molecular evolution throughout 10,000 generations in laboratory budding yeast populations. eLife 10, e63910 (2021).

  • Meyer, J. R. et al. Repeatability and contingency within the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McFarland, C. D., Mirny, L. A. & Korolev, Okay. S. Tug-of-war between driver and passenger mutations in most cancers and different adaptive processes. Proc. Natl Acad. Sci. USA 111, 15138–15143 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lenski, R. E. et al. Sustained health features and variability in health trajectories within the long-term evolution experiment with Escherichia coli. Proc. Biol. Sci. 282, 20152292 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, B. et al. Fast evolutionary response to a transmissible most cancers in Tasmanian devils. Nat. Commun. 7, 12684 (2016).

  • James, S. et al. Tracing the rise of malignant cell traces: distribution, epidemiology and evolutionary interactions of two transmissible cancers in Tasmanian devils. Evol. Appl. 12, 1772–1780 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deakin, J. E. & Belov, Okay. A comparative genomics strategy to understanding transmissible most cancers in Tasmanian devils. Annu. Rev. Genomics Hum. Genet. 13, 207–222 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Woods, R., Schneider, D., Winkworth, C. L., Riley, M. A. & Lenski, R. E. Exams of parallel molecular evolution in a long-term experiment with Escherichia coli. Proc. Natl Acad. Sci. USA 103, 9107–9112 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lieberman, T. D. et al. Parallel bacterial evolution inside a number of sufferers identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kistler, Okay. E., Huddleston, J. & Bedford, T. Fast and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545–555 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dunham, M. J. et al. Attribute genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 16144–16149 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torres, E. M. et al. Results of aneuploidy on mobile physiology and cell division in haploid yeast. Science 317, 916–924 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sharp, N. P., Sandell, L., James, C. G. & Otto, S. P. The genome-wide price and spectrum of spontaneous mutations differ between haploid and diploid yeast. Proc. Natl Acad. Sci. USA 115, E5046–E5055 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miroshnychenko, D. et al. Spontaneous cell fusions as a mechanism of parasexual recombination in tumour cell populations. Nat. Ecol. Evol. 5, 379–391 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Giersch, R. M. et al. Survival and detection of bivalve transmissible neoplasia from the soft-shell clam Mya arenaria (MarBTN) in seawater. Pathogens 11, 283 (2022).

  • Ní Leathlobhair, M. et al. The evolutionary historical past of canine within the Americas. Science 361, 81–85 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Strakova, A. & Murchison, E. P. The altering international distribution and prevalence of canine transmissible venereal tumour. BMC Vet. Res. 10, 168 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bellingham Smith, G. & Washbourn, J. W. Infective venereal tumours in canine. J. Comp. Pathol. Ther. 11, 41–51 (1898).

    Article 

    Google Scholar
     

  • Higgins, D. A. Observations on the canine transmissible venereal tumour as seen within the Bahamas. Vet. Rec. 79, 67–71 (1966).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Caldwell, A. et al. The newly-arisen Satan facial tumour illness 2 (DFT2) reveals a mechanism for the emergence of a contagious most cancers. eLife 7, e35314 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lachish, S., Jones, M. & McCallum, H. The influence of illness on the survival and inhabitants progress price of the Tasmanian satan. J. Anim. Ecol. 76, 926–936 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Lazenby, B. T. et al. Density tendencies and demographic indicators uncover the long-term influence of transmissible most cancers in Tasmanian devils. J. Appl. Ecol. 55, 1368–1379 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Burioli, E. A. V. et al. Implementation of varied approaches to check the prevalence, incidence and development of disseminated neoplasia in mussel shares. J. Invertebr. Pathol. 168, 107271 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mateo, D. R., MacCallum, G. S. & Davidson, J. Subject and laboratory transmission research of haemic neoplasia within the soft-shell clam, Mya arenaria, from Atlantic Canada. J. Fish Dis. 39, 913–927 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *