in

Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations

  • Pienta, Ok. J., Hammarlund, E. U., Austin, R. H., Axelrod, R., Brown, J. S. & Amend, S. R. Most cancers cells make use of an evolutionarily conserved polyploidization program to withstand remedy. In Seminars in Most cancers Biology, 1–15 (2020).

  • Siegel, R. L., Miller, Ok. D. & Jemal, A. Most cancers statistics, 2020. CA A Most cancers J. Clin. 70(1), 7–30 (2020).

    Article 

    Google Scholar
     

  • Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes most cancers a species of its personal. Cell Motil. Cytoskelet. 47(2), 81–107 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Forefront overview hallmarks of most cancers: The subsequent technology. Cell 144, 646–674 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amend, S. R. et al. Polyploid large most cancers cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pienta, Ok. J. et al. Convergent evolution, evolving evolvability, and the origins of deadly most cancers. Mol. Most cancers Res. 18(6), 801–810 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pienta, Ok. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid most cancers cells promote evolvability, producing deadly most cancers. Evol. Appl. 13(7), 1626–1634 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roychowdhury, S. et al. Personalised oncology by way of integrative high-throughput sequencing: A pilot research. Sci. Transl. Med. 3(111), 1–12 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kuczler, M. D., Olseen, A. M., Pienta, Ok. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid most cancers cells (PACCs). Prog. Biophys. Mol. Biol. 165, 3–7 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brown, R. L. What evolvability actually is. Br. J. Philos. Sci.65(3), 549–572 (2014).

    MathSciNet 
    Article 

    Google Scholar
     

  • Crother, B. I. & Murray, C. M. Early utilization and which means of evolvability. Ecol. Evol. 9(7), 3784–3793 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pigliucci, M. Is evolvability evolvable?. Genetics 9, 75–82 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kostecka, L. G., Pienta, Ok. J. & Amend, S. R. Polyaneuploid most cancers cell dormancy: Classes from evolutionary phyla. Entrance. Ecol. Evol. 9, 439 (2021).

    Article 

    Google Scholar
     

  • Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis–a paradigm of self-renewal in most cancers. Cell Biol. Int. 29(12), 1084–1097 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis–A parasexual somatic discount division in most cancers. Int. J. Hum. Genet. 7(1), 29–48 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel sort of cell division in most cancers. Most cancers Biol. Ther. 3(2), 207–218 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs health in driver and passenger mutations and suggests focusing on by no means mutations. Nat. Commun. 5(1), 1–9 (2014).

    Article 

    Google Scholar
     

  • Bukkuri, A. & Brown, J. S. Evolutionary sport concept: Darwinian dynamics and the G operate method. MDPI Video games 12(4), 1–19 (2021).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Lopez-Sánchez, L. M. et al. CoCl2, a mimic of hypoxia, induces formation of polyploid large cells with stem traits in colon most cancers. PLoS ONE 9(6), e99143 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mittal, Ok. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate most cancers. Br. J. Most cancers 116(9), 1186–1194 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like most cancers stem cells through formation of polyploid large most cancers cells. Oncogene 36(34), 4887–4900 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ogden, A., Rida, P. C. G., Knudsen, B. S., Kucuk, O. & Aneja, R. Docetaxel-induced polyploidization might underlie chemoresistance and illness relapse. Most cancers Lett. 367, 89–92 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin by way of DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, S. et al. Era of most cancers stem-like cells by way of the formation of polyploid large most cancers cells. Oncogene 33(1), 116–128 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin, Ok. C. et al. The function of heterogeneous surroundings and docetaxel gradient within the emergence of polyploid, mesenchymal and resistant prostate most cancers cells. Clin. Exp. Metastasis 36(2), 97–108 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Lin, Ok.-C. et al. Epithelial and mesenchymal prostate most cancers cell inhabitants dynamics on a fancy drug panorama. Converg. Sci. Phys. Oncol. 3(4), 045001 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 4(4), 597–601 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cairns, J. Mutation and most cancers: The antecedents to our research of adaptive mutation. Genetics 148(4), 1433–1440 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Corridor, B. G. Adaptive mutagenesis: A course of that generates virtually completely useful mutations. Genetica 102, 109 (1998).

    PubMed 
    Article 

    Google Scholar
     

  • Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7(2), 118–126 (1953).

    Article 

    Google Scholar
     

  • Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jablonka, E. V. A. & Raz, G. A. L. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the research of heredity and evolution. Q. Rev. Biol. 84(2), 131–176 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Steele, E. J. & Pollard, J. W. Speculation: Somatic hypermutation by gene conversion through the error inclined DNA(longrightarrow )RNA(longrightarrow )DNA data loop. Mol. Immunol. 24(6), 667–673 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steele, E. J. Somatic hypermutation in immunity and most cancers: Vital evaluation of strand-biased and codon-context mutation signatures. DNA Restore 45, 1–24 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Steele, E. J. Somatic Choice and Adaptive Evolution (Springer, US, 1979).


    Google Scholar
     

  • Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck’s Signature (Perseus Books, 1998).


    Google Scholar
     

  • Foster, P. L. Adaptive mutation: Implications for evolution. Bioessays 22, 1067–1074 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McCutcheon, J. P. & Moran, N. A. Excessive genome discount in symbiotic micro organism. Nat. Rev. Microbiol. 10(1), 13–26 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Badyaev, A. V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B Biol. Sci. 272, 877–886 (2005).

    Article 

    Google Scholar
     

  • Bateman, Ok. G. The genetic assimilation of 4 venation phenocopies. J. Genet. 56(3), 443–474 (1959).

    Article 

    Google Scholar
     

  • Milkman, R. D. The genetic foundation of pure variation. VI. Collection of a crossveinless pressure of Drosophila by phenocopying at excessive temperature. Genetics 51(1), 87 (1965).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Waddington, C. H. Genetic assimilation of the bithorax phenotype. Evolution 10(1), 1–13 (1956).

    Article 

    Google Scholar
     

  • Godoy, O., Saldaña, A., Fuentes, N., Valladares, F. & Gianoli, E. Forests should not proof against plant invasions: Phenotypic plasticity and native adaptation enable Prunella vulgaris to colonize a temperate evergreen rainforest. Biol. Invasions 13(7), 1615–1625 (2011).

    Article 

    Google Scholar
     

  • Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: An evaluation of proof for genetic lodging. Evolution 68(3), 656–672 (2014).

    PubMed 
    Article 

    Google Scholar
     

  • Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity within the range-margin inhabitants of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10(1), 1–13 (2010).

    Article 

    Google Scholar
     

  • Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19(22), 1932–1936 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Losos, J. B., Irschick, D. J. & Schoener, T. W. Adaptation and constraint within the evolution of specialization of Bahamian Anolis lizards. Evolution 48(6), 1786–1798 (1994).

    PubMed 
    Article 

    Google Scholar
     

  • Losos, J. B. et al. Evolutionary implications of phenotypic plasticity within the hindlimb of the lizard Anolis sagrei. Evolution 54(1), 301–305 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Sword, G. A. Density-dependent warning coloration. Nature 397(6716), 217 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Sword, G. A. A task for phenotypic plasticity within the evolution of aposematism. Proc. R. Soc. B Biol. Sci. 269(1501), 1639–1644 (2002).

    Article 

    Google Scholar
     

  • Clausen, J. & Hiesey, W. M. The steadiness between coherence and variation in evolution. Proc. Natl. Acad. Sci. 46(4), 494–506 (1960).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gurevitch, J. Variation in leaf dissection and leaf vitality budgets amongst populations of Achillea from an altitudinal gradient. Am. J. Bot. 75(9), 1298–1306 (1988).

    Article 

    Google Scholar
     

  • Gurevitch, J. & Schuepp, P. H. Boundary layer properties of extremely dissected leaves: An investigation utilizing an electrochemical fluid tunnel. Plant Cell Environ. 13(8), 783–792 (1990).

    Article 

    Google Scholar
     

  • Gurevitch, J. Sources of variation in leaf form amongst two populations of Achillea lanulosa. Genetics 130(2), 385–394 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Foster, P. L. Stress-induced mutagenesis in micro organism. Crit. Rev. Biochem. Mol. Biol. 42(5), 373–397 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soppa, J. Polyploidy in archaea and micro organism: About desiccation resistance, large cell measurement, long-term survival, enforcement by a eukaryotic host and extra points. Microb. Physiol. 24, 409–419 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bastide, A. & David, A. The ribosome, (gradual) beating coronary heart of most cancers (stem) cell. Oncogenesis 7(4), 1–13 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foster, P. L. Adaptive mutation: The makes use of of adversity. Annu. Rev. Microbiol. 47, 467–504. https://doi.org/10.1146/annurev.mi.47.100193.002343 (2003).

    Article 

    Google Scholar
     

  • Lenski, R. E. & Mittler, J. E. The directed mutation controversy and neo-Darwinism. Science 259(5092), 188–194 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lenski, R. E. & Sniegowski, P. D. “Adaptive mutation’’: The talk goes on. Science 269, 285–288 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Noller, H. F., Hoffarth, V. & Zimniak, L. Uncommon resistance of peptidyl transferase to protein extraction procedures. Science 256(5062), 1416–1419 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pribis, J. P. et al. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced normal stress response. Mol. Cell 74(4), 785–800 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Silvera, D., Formenti, S. C. & Schneider, R. J. Translational management in most cancers. Nat. Rev. Most cancers 10(4), 254–266 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shcherbakov, D. et al. Ribosomal mistranslation results in silencing of the unfolded protein response and elevated mitochondrial biogenesis. Commun. Biol. 2(1), 1–16 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Truitt, M. L. & Ruggero, D. New frontiers in translational management of the most cancers genome. Nat. Rev. Most cancers 16(5), 288–304 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Alphey, L. S., Crisanti, A., Randazzo, F. & Akbari, O. S. Opinion: Standardizing the definition of gene drive. Proc. Natl. Acad. Sci. USA 117(49), 30864 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Champer, J., Buchman, A. & Akbari, O. S. Dishonest evolution: Engineering gene drives to control the destiny of untamed populations. Nat. Rev. Genet. 17, 146–159 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Champer, S. E. et al. Modeling CRISPR gene drives for suppression of invasive rodents utilizing a supervised machine studying framework. PLOS Comput. Biol. 17(12), e1009660 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deredec, A., Burt, A. & Godfray, H. C. J. The inhabitants genetics of utilizing homing endonuclease genes in vector and pest administration. Genetics 179(4), 2013–2026 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Heffel, M. G. & Finnigan, G. C. Mathematical modeling of self-contained CRISPR gene drive reversal techniques. Sci. Rep. 9(1), 1–10 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Leftwich, P. T. et al. Latest advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nijhout, H. F., Kudla, A. M. & Hazelwood, C. C. Genetic assimilation and lodging: Fashions and mechanisms. Curr. Prime. Dev. Biol. 141, 337–369 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Noble, C., Adlam, B., Church, G. M., Esvelt, Ok. M. & Nowak, M. A. Present CRISPR gene drive techniques are prone to be extremely invasive in wild populations. eLife 7, e33423 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22(8), 1721–1732 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pigliucci, M. & Murren, C. J. Perspective: Genetic assimilation and a potential evolutionary paradox: Can macroevolution typically be so quick as to move us by?. Evolution 57, 1455–1464 (2003).

    PubMed 
    Article 

    Google Scholar
     

  • Hammerstein, P. Darwinian adaptation, inhabitants genetics and the streetcar concept of evolution. J. Math. Biol. 34(5–6), 511–532 (1996).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Dieckmann, U. Coevolutionary Dynamics of Stochastic Replicator Programs (Central Library of the Analysis Middle Jülich, 1994).


    Google Scholar
     

  • Dieckmann, U., Marrow, P. & Regulation, R. Evolutionary biking in predator-prey interactions: inhabitants dynamics and the purple queen. J. Theor. Biol. 176(1), 91–102 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dieckmann, U. & Regulation, R. The dynamical concept of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).

    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How ought to we outline ‘health’ for normal ecological eventualities?. Tendencies Ecol. Evol. 7(6), 198–202 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goldschmidt, R. Some points of evolution. Science 78(2033), 539–547 (1933).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vincent, T. L., Cohen, Y. & Brown, J. S. Evolution through technique dynamics. Theor. Popul. Biol. 44(2), 149–176 (1993).

    MATH 
    Article 

    Google Scholar
     

  • Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).

    Article 

    Google Scholar
     

  • Comments

    Leave a Reply

    Your email address will not be published.

    Loading…

    0

    How personal training boosts fitness goals

    A Detailed Breakdown Of The Pros And Cons of Dermal Fillers