Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage ΦD5 results in fitness tradeoffs for the bacterium during infection

  • Campbell, A. The way forward for bacteriophage biology. Nat. Rev. Genet. 4, 471–477. https://doi.org/10.1038/nrg1089 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheetham, B. F. & Katz, M. E. A task for bacteriophages within the evolution and switch of bacterial virulence determinants. Mol. Microbiol. 18, 201–208. https://doi.org/10.1111/j.1365-2958.1995.mmi_18020201.x (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mann, N. H. The third age of phage. PLoS Biol. 3, e182. https://doi.org/10.1371/journal.pbio.0030182 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thurber, R. V. Present insights into phage biodiversity and biogeography. Curr. Opin. Microbiol. 12, 582–587. https://doi.org/10.1016/j.mib.2009.08.008 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Buckling, A. & Rainey, P. B. Antagonistic coevolution between a bacterium and a bacteriophage. Proc. Biol. Sci. 269, 931–936. https://doi.org/10.1098/rspb.2001.1945 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dennehy, J. J. What can phages inform us about host-pathogen coevolution?. Int. J. Evol. Biol. 2012, 396165. https://doi.org/10.1155/2012/396165 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forde, S. E., Thompson, J. N., Holt, R. D. & Bohannan, B. J. Coevolution drives temporal modifications in health and variety throughout environments in a bacteria-bacteriophage interplay. Evolution 62, 1830–1839. https://doi.org/10.1111/j.1558-5646.2008.00411.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Suttle, C. A. The importance of viruses to mortality in aquatic microbial communities. Microb. Ecol. 28, 237–243. https://doi.org/10.1007/BF00166813 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Duffy, M. A. & Forde, S. E. Ecological feedbacks and the evolution of resistance. J. Anim. Ecol. 78, 1106–1112. https://doi.org/10.1111/j.1365-2656.2009.01568.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Koskella, B. & Brockhurst, M. A. Micro organism-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38, 916–931. https://doi.org/10.1111/1574-6976.12072 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chibani-Chennoufi, S., Bruttin, A., Dillmann, M. L. & Brussow, H. Phage-host interplay: an ecological perspective. J. Bacteriol. 186, 3677–3686. https://doi.org/10.1128/JB.186.12.3677-3686.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages permits marine synechococcus communities to coexist with cyanophages ample in seawater. Appl. Environ. Microbiol. 59, 3393–3399. https://doi.org/10.1128/aem.59.10.3393-3399.1993 (1993).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koskella, B. & Parr, N. The evolution of bacterial resistance towards bacteriophages within the horse chestnut phyllosphere is common throughout each area and time. Phil. Trans. R. Soc. B 370, 20140297 (2015).

    Article 

    Google Scholar
     

  • Hantula, J., Kurki, A., Vuoriranta, P. & Bamford, D. H. Ecology of bacteriophages infecting activated sludge micro organism. Appl. Environ. Microbiol. 57, 2147–2151. https://doi.org/10.1128/aem.57.8.2147-2151.1991 (1991).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez, L., Gutierrez, D., Rodriguez, A. & Garcia, P. Software of bacteriophages within the agro-food sector: a great distance towards approval. Entrance. Cell Infect. Microbiol. 8, 296. https://doi.org/10.3389/fcimb.2018.00296 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, J. B. et al. Bacteriophages for plant illness management. Annu Rev. Phytopathol. 45, 245–262. https://doi.org/10.1146/annurev.phyto.45.062806.094411 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bradde, S., Vucelja, M., Tesileanu, T. & Balasubramanian, V. Dynamics of adaptive immunity towards phage in bacterial populations. PLoS Comput. Biol. 13, e1005486. https://doi.org/10.1371/journal.pcbi.1005486 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naureen, Z. et al. Bacteriophages presence in nature and their function within the pure number of bacterial populations. Acta Biomed. 91, e2020024. https://doi.org/10.23750/abm.v91i13-S.10819 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, A. & Sorek, R. The phage-host arms race: shaping the evolution of microbes. BioEssays 33, 43–51. https://doi.org/10.1002/bies.201000071 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burmeister, A. R. & Turner, P. E. Buying and selling-off and trading-up on the planet of bacteria-phage evolution. Curr. Biol. 30, R1120–R1124. https://doi.org/10.1016/j.cub.2020.07.036 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Koderi Valappil, S. et al. Survival comes at a price: a coevolution of phage and its host results in phage resistance and antibiotic sensitivity of Pseudomonas aeruginosa multidrug resistant strains. Entrance. Microbiol. 12, 783722. https://doi.org/10.3389/fmicb.2021.783722 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327. https://doi.org/10.1038/nrmicro2315 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lythgoe, Okay. A. & Chao, L. Mechanisms of coexistence of a micro organism and a bacteriophage in a spatially homogeneous surroundings. Ecol. Lett. 6, 326–334. https://doi.org/10.1046/j.1461-0248.2003.00433.x (2003).

    Article 

    Google Scholar
     

  • Mizoguchi, Okay. et al. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in steady tradition. Appl. Environ. Microbiol. 69, 170–176. https://doi.org/10.1128/AEM.69.1.170-176.2003 (2003).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lennon, J. T., Khatana, S. A., Marston, M. F. & Martiny, J. B. Is there a price of virus resistance in marine cyanobacteria?. ISME J. 1, 300–312. https://doi.org/10.1038/ismej.2007.37 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Vale, P. F. et al. Prices of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc. Biol. Sci. 282, 20151270. https://doi.org/10.1098/rspb.2015.1270 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eager, E. C. Tradeoffs in bacteriophage life histories. Bacteriophage 4, e28365. https://doi.org/10.4161/bact.28365 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abedon, S. T. Bacterial ‘immunity’ towards bacteriophages. Bacteriophage 2, 50–54 (2012).

    Article 

    Google Scholar
     

  • Charkowski, A. O. The altering face of bacterial soft-rot illnesses. Annu. Rev. Phytopathol. 56, 269–288. https://doi.org/10.1146/annurev-phyto-080417-045906 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Mansfield, J. et al. Prime 10 plant pathogenic micro organism in molecular plant pathology. Mol. Plant Pathol. 13, 614–629. https://doi.org/10.1111/j.1364-3703.2012.00804.x (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perombelon, M. C. M. Potato illnesses brought on by gentle rot Erwinias: an outline of pathogenesis. Plant. Pathol. 51, 1–12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.x (2002).

    Article 

    Google Scholar
     

  • Perombelon, M. C. M. & Kelman, A. Ecology of the gentle rot Erwinias. Annu. Rev. Phytopathol. 18, 361–387 (1980).

    Article 

    Google Scholar
     

  • Rossmann, S., Dees, M. W., Perminow, J., Meadow, R. & Brurberg, M. B. Mushy Rot Enterobacteriaceae are carried by a wide variety of insect species in potato fields. Appl. Environ. Microbiol. 84, 1. https://doi.org/10.1128/AEM.00281-18 (2018).

    Article 

    Google Scholar
     

  • Fikowicz-Krosko, J., Wszalek-Rozek, Okay., Smolarska, A. & Czajkowski, R. First report of isolation of sentimental rot Pectobacterium carotovorum subsp carotovorum from symptomless bittersweet nightshade occuing in rural space of Poland. J. Plant Pathol. 99, 1 (2017).


    Google Scholar
     

  • Batinovic, S. et al. Bacteriophages in pure and synthetic environments. Pathogens 8, 100. https://doi.org/10.3390/pathogens8030100 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Wright, R. C. T., Friman, V. P., Smith, M. C. M. & Brockhurst, M. A. Resistance evolution towards phage combos relies on the timing and order of publicity. mBio 10, e01652–01619, https://doi.org/10.1128/mBio.01652-19 (2019).

  • Borin, J. M., Avrani, S., Barrick, J. E., Petrie, Okay. L. & Meyer, J. R. Coevolutionary phage coaching results in higher bacterial suppression and delays the evolution of phage resistance. Proc. Natl. Acad. Sci. USA 118, e2104592118. https://doi.org/10.1073/pnas.2104592118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Wolf, J. M. et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium remoted from potato (Solanum tuberosum). Int J Syst Evol Microbiol 64, 768–774, https://doi.org/10.1099/ijs.0.052944-0 (2014).

  • Toth, I. Okay. et al. Dickeya species: an rising downside for potato manufacturing in Europe. Plant. Pathol. 60, 385–399. https://doi.org/10.1111/j.1365-3059.2011.02427.x (2011).

    Article 

    Google Scholar
     

  • Czajkowski, R., van Veen, J. A. & van der Wolf, J. M. New biovar 3 Dickeya spp. pressure (syn. Erwinia chrysanthemi) as a causative agent of blackleg in seed potato in Europe. Phytopathology 99, S27-S27 (2009).

  • Tsror Lahkim, L. et al. Characterization of Dickeya strains remoted from potato grown underneath hot-climate circumstances. Plant Pathology 62, 1097–1105, doi:https://doi.org/10.1111/ppa.12030 (2013).

  • Tsror, L. et al. First report of potato blackleg brought on by a biovar 3 Dickeya sp. in Georgia. New Illness Studies 23, 1 (2011).

  • Ozturk, M. & Aksoy, H. M. First report of Dickeya solani related to potato blackleg and gentle rot in Turkey. J. Plant Pathol. 99, 298 (2017).


    Google Scholar
     

  • Cardoza, Y. F., Duarte, V. & Lopes, C. A. First report of blackleg of potato brought on by Dickeya solani in Brazil. Plant. Dis. 101, 243–243. https://doi.org/10.1094/pdis-07-16-1045-pdn (2017).

    CAS 
    Article 

    Google Scholar
     

  • Khayi, S., Blin, P., Chong, T. M., Chan, Okay. G. & Faure, D. Full genome anatomy of the rising potato pathogen Dickeya solani kind pressure IPO 2222(T). Stand. Genom. Sci. 11, 87. https://doi.org/10.1186/s40793-016-0208-0 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Czajkowski, R., Ozymko, Z. & Lojkowska, E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol. 63, 758–772, doi:https://doi.org/10.1111/ppa.12157 (2014).

  • Czajkowski, R., Smolarska, A. & Ozymko, Z. The viability of lytic bacteriophage PhiD5 in potato-associated environments and its impact on Dickeya solani in potato (Solanum tuberosum L.) vegetation. PLoS ONE 12, e0183200, doi:https://doi.org/10.1371/journal.pone.0183200 (2017).

  • Adriaenssens, E. M. et al. A steered new bacteriophage genus: “Viunalikevirus”. Arch Virol 157, 2035–2046. https://doi.org/10.1007/s00705-012-1360-5 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adriaenssens, E. M. et al. T4-related bacteriophage LIMEstone isolates for the management of sentimental rot on potato brought on by “Dickeya solani”. PLoS ONE 7, e33227. https://doi.org/10.1371/journal.pone.0033227 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrzik, Okay., Vacek, J., Brazdova, S., Sevcik, R. & Koloniuk, I. Variety of limestone bacteriophages infecting Dickeya solani remoted within the Czech Republic. Arch Virol 166, 1171–1175. https://doi.org/10.1007/s00705-020-04926-7 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ranjan, M. et al. Genomic variety and group of advanced polysaccharide biosynthesis clusters within the genus Dickeya. PLoS ONE 16, e0245727. https://doi.org/10.1371/journal.pone.0245727 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedron, J., Chapelle, E., Alunni, B. & Van Gijsegem, F. Transcriptome evaluation of the Dickeya dadantii PecS regulon in the course of the early phases of interplay with Arabidopsis thaliana. Mol Plant Pathol 19, 647–663. https://doi.org/10.1111/mpp.12549 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Czajkowski, R. Bacteriophages of Mushy Rot Enterobacteriaceae-a minireview. FEMS Microbiol. Lett. 363, fnv230, doi:https://doi.org/10.1093/femsle/fnv230 (2016).

  • Toth, I. Okay. et al. in Plant Illnesses Brought on by Dickeya and Pectobacterium Species (eds Frédérique Van Gijsegem, Jan M. van der Wolf, & Ian Okay. Toth) Ch. Chapter 2, 13–37 (Springer Worldwide Publishing, 2021).

  • Holt, Okay. E., Lassalle, F., Wyres, Okay. L., Wick, R. & Mostowy, R. J. Variety and evolution of floor polysaccharide synthesis loci in Enterobacteriales. ISME J. 14, 1713–1730. https://doi.org/10.1038/s41396-020-0628-0 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnaitman, C. A. & Klena, J. D. Genetics of lipopolysaccharide biosynthesis in enteric micro organism. Microbiol. Rev. 57, 655–682. https://doi.org/10.1128/mr.57.3.655-682.1993 (1993).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangalea, M. R. & Duerkop, B. A. Health trade-offs ensuing from bacteriophage resistance potentiate synergistic antibacterial methods. Infect. Immun. 88, e00926-e1919. https://doi.org/10.1128/IAI.00926-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohannan, B. J. M. & Lenski, R. E. Linking genetic change to group evolution: insights from research of micro organism and bacteriophage. Ecol. Lett. 3, 362–377. https://doi.org/10.1046/j.1461-0248.2000.00161.x (2000).

    Article 

    Google Scholar
     

  • Bartnik, P., Jafra, S., Narajczyk, M., Czaplewska, P. & Czajkowski, R. Pectobacterium parmentieri SCC 3193 mutants with altered synthesis of cell floor polysaccharides are immune to N4-like lytic bacteriophage phiA38 (vB_Ppp_A38) however specific decreased virulence in potato (Solanum tuberosum L.) Crops. Int J Mol Sci 22, 7346, doi:https://doi.org/10.3390/ijms22147346 (2021).

  • Evans, T. J., Ind, A., Komitopoulou, E. & Salmond, G. P. C. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit completely different impacts on virulence. J. Appl. Microbiol. 109, 505–514. https://doi.org/10.1111/j.1365-2672.2010.04669.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lukianova, A. A. et al. Morphologically Completely different Pectobacterium brasiliense bacteriophages PP99 and PP101: deacetylation of O-polysaccharide by the tail spike protein of phage PP99 accompanies the An infection. Entrance. Microbiol. 10, 3147. https://doi.org/10.3389/fmicb.2019.03147 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Colanic acid is a novel phage receptor of Pectobacterium carotovorum subsp. carotovorum phage POP72. Entrance. Microbiol. 10, 143, https://doi.org/10.3389/fmicb.2019.00143 (2019).

  • Costerton, J. W., Irvin, R. T. & Cheng, Okay. J. The function of bacterial floor constructions in pathogenesis. Crit. Rev. Microbiol. 8, 303–338. https://doi.org/10.3109/10408418109085082 (1981).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Beveridge, T. J. & Graham, L. L. Floor layers of micro organism. Microbiol. Rev. 55, 684–705. https://doi.org/10.1128/mr.55.4.684-705.1991 (1991).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Haeze, W. & Holsters, M. Floor polysaccharides allow micro organism to evade plant immunity. Developments Microbiol. 12, 555–561. https://doi.org/10.1016/j.tim.2004.10.009 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, J. & Wang, N. The gpsX gene encoding a glycosyltransferase is necessary for polysaccharide manufacturing and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiol. 12, 31 (2012).

  • Santaella, C., Schue, M., Berge, O., Heulin, T. & Achouak, W. The exopolysaccharide of Rhizobium sp. YAS34 shouldn’t be obligatory for biofilm formation on Arabidopsis thaliana and Brassica napus roots however contributes to root colonization. Environ. Microbiol. 10, 2150–2163, doi:https://doi.org/10.1111/j.1462-2920.2008.01650.x (2008).

  • Morona, J. Okay., Miller, D. C., Morona, R. & Paton, J. C. The impact that mutations within the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB, and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189, 1905–1913. https://doi.org/10.1086/383352 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Lawlor, M. S., Handley, S. A. & Miller, V. L. Comparability of the host responses to wild-type and cpsB mutant Klebsiella pneumoniae infections. Infect. Immun. 74, 5402–5407. https://doi.org/10.1128/IAI.00244-06 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geider, Okay. et al. in Advances in Molecular Genetics of Plant-Microbe Interactions Vol. 1 Present Plant Science and Biotechnology in Agriculture (eds Hauke Hennecke & Desh Pal S. Verma) Ch. Chapter 14, 90–93 (Springer Netherlands, 1991).

  • Mohamed, Okay. H. et al. Deciphering the twin impact of lipopolysaccharides from plant pathogenic Pectobacterium. Plant Sign Behav. 10, e1000160. https://doi.org/10.1080/15592324.2014.1000160 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katzen, F. et al. Xanthomonas campestris pv. campestris gum mutants: results on xanthan biosynthesis and plant virulence. J. Bacteriol. 180, 1607–1617. https://doi.org/10.1128/JB.180.7.1607-1617.1998 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitfield, C., Put on, S. S. & Sande, C. Meeting of bacterial capsular polysaccharides and exopolysaccharides. Annu. Rev. Microbiol. 74, 521–543. https://doi.org/10.1146/annurev-micro-011420-075607 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ormeno-Orrillo, E., Rosenblueth, M., Luyten, E., Vanderleyden, J. & Martinez-Romero, E. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ. Microbiol. 10, 1271–1284. https://doi.org/10.1111/j.1462-2920.2007.01541.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Touze, T., Goude, R., Georgeault, S., Blanco, C. & Bonnassie, S. Erwinia chrysanthemi O antigen is required for betaine osmoprotection in high-salt media. J. Bacteriol. 186, 5547–5550. https://doi.org/10.1128/JB.186.16.5547-5550.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, M. G. & Kaplan, H. B. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular improvement. Mol. Microbiol. 30, 275–284. https://doi.org/10.1046/j.1365-2958.1998.01060.x (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Andrianopoulos, Okay., Wang, L. & Reeves, P. R. Identification of the fucose synthetase gene within the colanic acid gene cluster of Escherichia coli Okay-12. J. Bacteriol. 180, 998–1001. https://doi.org/10.1128/JB.180.4.998-1001.1998 (1998).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, R., Brown, S., Taheri, A. & Dumenyo, C. Okay. The gene encoding NAD-dependent epimerase/dehydratase, wcaG, impacts cell floor properties, virulence, and extracellular enzyme manufacturing within the gentle rot phytopathogen Pectobacterium carotovorum. Microorganisms 7, 172. https://doi.org/10.3390/microorganisms7060172 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar
     

  • Qimron, U., Marintcheva, B., Tabor, S. & Richardson, C. C. Genomewide screens for Escherichia coli genes affecting development of T7 bacteriophage. Proc. Natl. Acad. Sci. USA 103, 19039–19044. https://doi.org/10.1073/pnas.0609428103 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagnout, C. et al. Pleiotropic results of rfa-gene mutations on Escherichia coli envelope properties. Sci. Rep. 9, 9696. https://doi.org/10.1038/s41598-019-46100-3 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanaro, L. & Arciola, C. R. in Handbook of Bacterial Adhesion: Rules, Strategies, and Functions (eds Yuehuei H. An & Richard J. Friedman) 331–343 (Humana Press, 2000).

  • Berne, C., Ellison, C. Okay., Ducret, A. & Brun, Y. V. Bacterial adhesion on the single-cell stage. Nat. Rev. Microbiol. 16, 616–627. https://doi.org/10.1038/s41579-018-0057-5 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Brown, M. R. & Williams, P. The affect of surroundings on envelope properties affecting survival of micro organism in infections. Annu. Rev. Microbiol. 39, 527–556. https://doi.org/10.1146/annurev.mi.39.100185.002523 (1985).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Czajkowski, R. et al. Genome-Huge identification of Dickeya solani transcriptional models up-regulated in response to plant tissues from a crop-host Solanum tuberosum and a weed-host Solanum dulcamara. Entrance. Plant. Sci. 11, 580330. https://doi.org/10.3389/fpls.2020.580330 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meaden, S. & Koskella, B. Exploring the dangers of phage utility within the surroundings. Entrance. Microbiol. 4, 358. https://doi.org/10.3389/fmicb.2013.00358 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reverchon, S., Muskhelisvili, G. & Nasser, W. in Progress in Molecular Biology and Translational Science Vol. 142 (eds Michael San Francisco & Brian San Francisco) 51–92 (Tutorial Press, 2016).

  • Jiang, X. et al. World transcriptional response of Dickeya dadantii to environmental stimuli related to the plant an infection. Environ. Microbiol. 18, 3651–3672. https://doi.org/10.1111/1462-2920.13267 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. LPS reworking is an developed survival technique for micro organism. Proc. Natl. Acad. Sci. USA 109, 8716–8721. https://doi.org/10.1073/pnas.1202908109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrick, C. A. & Sequeira, L. Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl. Environ. Microbiol. 48, 94–101. https://doi.org/10.1128/aem.48.1.94-101.1984 (1984).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berry, M. C., McGhee, G. C., Zhao, Y. & Sundin, G. W. Impact of a waaL mutation on lipopolysaccharide composition, oxidative stress survival, and virulence in Erwinia amylovora. FEMS Microbiol. Lett. 291, 80–87. https://doi.org/10.1111/j.1574-6968.2008.01438.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Czajkowski, R., Ozymko, Z., Zwirowski, S. & Lojkowska, E. Full genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage phiD5. Arch. Virol. 159, 3153–3155, doi:https://doi.org/10.1007/s00705-014-2170-8 (2014).

  • Lisicka, W. et al. Oxygen availability influences expression of Dickeya solani genes related to virulence in potato (Solanum tuberosum L.) and chicory (Cichorium intybus L.). Entrance. Plant. Sci. 9, 374, doi:https://doi.org/10.3389/fpls.2018.00374 (2018).

  • Czajkowski, R., Marcisz, M. & Bartnik, P. Quick and dependable screening assay developed to preselect candidate Mushy Rot Pectobacteriaceae Tn5 mutants displaying resistance to bacteriophage an infection. Eur. J. Plant Pathol. 155, 671–676. https://doi.org/10.1007/s10658-019-01786-z (2019).

    CAS 
    Article 

    Google Scholar
     

  • Aziz, R. Okay. et al. The RAST Server: fast annotations utilizing subsystems know-how. BMC Genom. 9, 75. https://doi.org/10.1186/1471-2164-9-75 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Fundamental native alignment search software. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kurowski, M. A. & Bujnicki, J. M. GeneSilico protein construction prediction meta-server. Nucl. Acids Res. 31, 3305–3307. https://doi.org/10.1093/nar/gkg557 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F. & Koonin, E. V. Iterated profile searches with PSI-BLAST-a software for discovery in protein databases. Developments Biochem. Sci. 23, 444–447. https://doi.org/10.1016/s0968-0004(98)01298-5 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I., Yamada, T., Kanehisa, M. & Bork, P. iPath: interactive exploration of biochemical pathways and networks. Developments Biochem. Sci. 33, 101–103. https://doi.org/10.1016/j.tibs.2008.01.001 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: protein-protein affiliation networks with elevated protection, supporting practical discovery in genome-wide experimental datasets. Nucl. Acids Res. 47, D607–D613. https://doi.org/10.1093/nar/gky1131 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Czajkowski, R., Ozymko, Z. & Lojkowska, E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol. 63, 758–772, https://doi.org/10.1111/ppa.12157, (2014).

  • Shao, Y. & Wang, I. N. Bacteriophage adsorption charge and optimum lysis time. Genetics 180, 471–482. https://doi.org/10.1534/genetics.108.090100 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Czajkowski, R., Kaczyńska, N., Jafra, S., Narajczyk, M. & Lojkowska, E. Temperature-responsive genetic loci in pectinolytic plant pathogenic Dickeya solani. Plant. Pathol. 66, 584–594. https://doi.org/10.1111/ppa.12618 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Roth, V. Doubling time computing, utility obtainable from: http://www.doubling-time.com/compute.php, (2006).

  • Krzyzanowska, D. M. et al. Appropriate combination of bacterial antagonists developed to guard ootato tubers from gentle rot brought on by Pectobacterium spp. and Dickeya spp. Plant. Dis. 103, 1374–1382, doi:https://doi.org/10.1094/PDIS-10-18-1866-RE (2019).

  • Czajkowski, R., de Boer, W. J., van Veen, J. A. & van der Wolf, J. M. Characterization of bacterial isolates from rotting potato tuber tissue displaying antagonism to Dickeya sp. biovar 3 in vitro and in planta. Plant Pathology 61, 169–182, https://doi.org/10.1111/j.1365-3059.2011.02486.x (2012).

  • Shao, X., Xie, Y., Zhang, Y. & Deng, X. Biofilm formation assay in Pseudomonas syringae. Biol. Protoc. 9, e3237. https://doi.org/10.21769/BioProtoc.3237 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Dickey, R. S. Erwinia chrysanthemi: a comparative research of phenotypic properties of strains from a number of hosts and different Erwinia species. Phytopathol. 69, 324–329 (1979).

    Article 

    Google Scholar
     

  • Perombelon, M. C. M. & van Der Wolf, J. M. Strategies for the detection and quantification of Erwinia carotovora subsp. atroseptica (Pectobacterium carotovorum subsp. atrosepticum) on potatoes: a laboratory handbook. Scottish Crop Analysis Institute Annual Report 10 (2002).

  • Py, B., Bortoli-German, I., Haiech, J., Chippaux, M. & Barras, F. Cellulase EGZ of Erwinia chrysanthemi: structural group and significance of His98 and Glu133 residues for catalysis. Prot. Eng. 4, 325–333. https://doi.org/10.1093/protein/4.3.325 (1991).

    CAS 
    Article 

    Google Scholar
     

  • Ji, J. W., Hugouvieux Cotte Pattat, N. & Robert Baudouy, J. Use of Mu-Lac insertions to check the secretion of pectate lyases by Erwinia chrysanthemi. J. Gen. Microbiol. 133, 793–802 (1987).

  • Schwyn, B. & Neilands, J. B. Common chemical assay for the detection and dedication of siderophores. Anal Biochem. 160, 47–56. https://doi.org/10.1016/0003-2697(87)90612-9 (1987).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fiolka, M. J. et al. Antimycobacterial motion of a brand new glycolipid-peptide advanced obtained from extracellular metabolites of Raoultella ornithinolytica. APMIS 123, 1069–1080. https://doi.org/10.1111/apm.12466 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Sorroche, F. G., Rinaudi, L. V., Zorreguieta, A. & Giordano, W. EPS II-dependent autoaggregation of Sinorhizobium meliloti planktonic cells. Curr. Microbiol. 61, 465–470. https://doi.org/10.1007/s00284-010-9639-9 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Dorken, G., Ferguson, G. P., French, C. E. & Poon, W. C. Aggregation by depletion attraction in cultures of micro organism producing exopolysaccharide. J. R. Soc. Interface 9, 3490–3502. https://doi.org/10.1098/rsif.2012.0498 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trunk, T., Khalil, H. S. & Leo, J. C. Bacterial autoaggregation. AIMS Microbiol. 4, 140–164. https://doi.org/10.3934/microbiol.2018.1.140 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przepiora, T. et al. The periplasmic oxidoreductase DsbA is required for virulence of the phytopathogen Dickeya solani. Int. J. Mol. Sci. 23, 697 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk methodology. Am. J. Clin. Pathol. 45, 493–500 (1966).

    CAS 
    Article 

    Google Scholar
     

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: a laboratory handbook. (1989).

  • Tsai, C. M. & Frasch, C. E. A delicate silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal. Biochem. 119, 115–119. https://doi.org/10.1016/0003-2697(82)90673-x (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Fikowicz-Krosko, J. & Czajkowski, R. Systemic colonization and expression of illness signs on bittersweet nightshade (Solanum dulcamara) contaminated with a GFP-tagged Dickeya solani IPO2222 (IPO2254). Plant. Dis. 102, 619–627. https://doi.org/10.1094/PDIS-08-17-1147-RE (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Miller, W. G., Leveau, J. H. & Lindow, S. E. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant. Microbe Work together 13, 1243–1250. https://doi.org/10.1094/MPMI.2000.13.11.1243 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Bloemberg, G. V., Wijfjes, A. H., Lamers, G. E., Stuurman, N. & Lugtenberg, B. J. Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three completely different autofluorescent proteins within the rhizosphere: new views for finding out microbial communities. Mol. Plant. Microbe Work together 13, 1170–1176. https://doi.org/10.1094/MPMI.2000.13.11.1170 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Czajkowski, R. et al. Virulence of ‘Dickeya solani’ and Dickeya dianthicola biovar-1 and -7 strains on potato (Solanum tuberosum). Plant. Pathol. 62, 597–610. https://doi.org/10.1111/j.1365-3059.2012.02664.x (2013).

    CAS 
    Article 

    Google Scholar
     

  • Czajkowski, R., de Boer, W. J., Velvis, H. & van der Wolf, J. M. Systemic colonization of potato vegetation by a soilborne, inexperienced fluorescent protein-tagged pressure of Dickeya sp. biovar 3. Phytopathology 100, 134–142, doi:https://doi.org/10.1094/PHYTO-100-2-0134 (2010).

  • Czajkowski, R., Grabe, G. J. & van der Wolf, J. M. Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in naturally contaminated seed potatoes. Eur. J. Plant Pathol. 125, 263–275, doi:https://doi.org/10.1007/s10658-009-9480-9 (2009).

  • Czajkowski, R., de Boer, W. J., van Veen, J. A. & van der Wolf, J. M. Research on the interplay between the biocontrol agent, Serratia plymuthica A30, with blackleg inflicting Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathol. 61, 677–688 (2012).

  • Shapiro, S. S. & Wilk, M. B. An evaluation of variance check for normality (full samples). Biometrika 52, 591–600. https://doi.org/10.2307/2333709 (1965).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Welch, B. L. The generalisation of scholar’s issues when a number of completely different inhabitants variances are concerned. Biometrika 34, 28–35. https://doi.org/10.1093/biomet/34.1-2.28 (1947).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Field, G. E. P. Non-normality and assessments on variances. Biometrika 40, 318–335. https://doi.org/10.2307/2333350 (1953).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • Scholar. The possible error of a imply. Biometrika 6, 1–25, doi:https://doi.org/10.2307/2331554 (1908).

  • Shieh, G. & Jan, S. L. The effectiveness of randomized full block design. Stat. Neerl. 58, 111–124 (2004).

    MathSciNet 
    Article 

    Google Scholar
     

  • Comments

    0 comments

    Leave a comment

    Your email address will not be published. Required fields are marked *